材料研究方法课后习题答案.doc

上传人:聆听****声音 文档编号:609684 上传时间:2023-04-29 格式:DOC 页数:24 大小:103KB
下载 相关 举报
材料研究方法课后习题答案.doc_第1页
第1页 / 共24页
材料研究方法课后习题答案.doc_第2页
第2页 / 共24页
材料研究方法课后习题答案.doc_第3页
第3页 / 共24页
材料研究方法课后习题答案.doc_第4页
第4页 / 共24页
材料研究方法课后习题答案.doc_第5页
第5页 / 共24页
材料研究方法课后习题答案.doc_第6页
第6页 / 共24页
材料研究方法课后习题答案.doc_第7页
第7页 / 共24页
材料研究方法课后习题答案.doc_第8页
第8页 / 共24页
材料研究方法课后习题答案.doc_第9页
第9页 / 共24页
材料研究方法课后习题答案.doc_第10页
第10页 / 共24页
材料研究方法课后习题答案.doc_第11页
第11页 / 共24页
材料研究方法课后习题答案.doc_第12页
第12页 / 共24页
材料研究方法课后习题答案.doc_第13页
第13页 / 共24页
材料研究方法课后习题答案.doc_第14页
第14页 / 共24页
材料研究方法课后习题答案.doc_第15页
第15页 / 共24页
材料研究方法课后习题答案.doc_第16页
第16页 / 共24页
材料研究方法课后习题答案.doc_第17页
第17页 / 共24页
材料研究方法课后习题答案.doc_第18页
第18页 / 共24页
材料研究方法课后习题答案.doc_第19页
第19页 / 共24页
材料研究方法课后习题答案.doc_第20页
第20页 / 共24页
亲,该文档总共24页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

材料研究方法课后习题答案.doc

《材料研究方法课后习题答案.doc》由会员分享,可在线阅读,更多相关《材料研究方法课后习题答案.doc(24页珍藏版)》请在冰点文库上搜索。

材料研究方法课后习题答案.doc

材料研究方法课后习题答案

第一章绪论

1.材料时如何分类的?

材料的结构层次有哪些?

答:

材料按化学组成和结构分:

金属材料、无机非金属材料、高分子材料、复合材料

材料的结构层次有:

微观结构、亚微观结构、显微结构、宏观结构。

2.材料研究的主要任务和对象是什么?

有哪些相应的研究方法?

答:

任务:

研究、制造和合理使用各类材料。

研究对象:

材料的组成、结构和性能。

研究方法:

图像分析法、非图形分析法:

衍射法、成分谱分析。

成分谱分析法:

光谱、色谱、热谱等;

光谱包括:

紫外、红外、拉曼、荧光;

色谱包括:

气相、液相、凝胶色谱等;

热谱包括:

DSC、DTA等。

3.材料研究方法是如何分类的?

如何理解现代研究方法的重要性?

答:

按研究仪器测试的信息形式分为图像分析法和非图形分析法;

按工作原理,前者为显微术,后者为衍射法和成分谱分析。

重要性:

1)理论:

新材料的结构鉴定分析;

2)实际应用需要:

配方剖析、质量控制、事故分析等。

第二章光学显微分析

1.区分晶体的颜色、多色性及吸收性,为何非均质体矿物晶体具有多色性?

答:

颜色:

晶体对白光中七色光波选择吸收的结果。

多色性:

由于光波和晶体中的振动方向不同,使晶体颜色发生改变的现象。

吸收性:

颜色深浅发生改变的现象称为吸收性。

光波射入非均质矿物晶体时,振动方向是不同的,折射率也是不同的,因此体现了多色性。

2.什么是贝克线?

其移动规律如何?

有什么作用?

答:

在两个折射率不同的物质接触处,可以看到比较黑暗的边缘,称为晶体的轮廓。

在轮廓附近可以看到一条比较明亮的细线,当升降镜筒时,亮线发生移动,这条较亮的细线称为贝克线。

移动规律:

提升镜筒,贝克线向折射率答的介质移动。

作用:

根据贝克线的移动规律,比较相邻两晶体折射率的相对大小。

3.什么是晶体的糙面、突起、闪突起?

决定晶体糙面和突起等级的因素是什么?

答:

糙面:

在单偏光镜下观察晶体表面时,可发现某些晶体表面较为光滑,某些晶体表面显得粗糙呈麻点状,好像粗糙皮革一样这种现象称为糙面。

突起:

在晶体形貌观察时会感觉到不同晶体表面好像高低不平,某些晶体显得高一些,某些晶体显得低一些,这种现象称为突起。

闪突起:

双折射率答的晶体,在单偏光镜下,旋转物台,突起高低发生明显的变化,这种现象称为闪突起。

决定晶体糙面和突起等级的因素:

根据光片中突起的高低、轮廓、糙面的明显程度划分等级。

4.什么叫干涉色?

影响晶体干涉色的因素有哪些?

光的干涉条件是什么?

答:

白光由七种不同波长的单色光组成,由于不同单色光发生的消光位和最强位因各自波长而处于不同位置,因此七种单色光的明暗干涉条纹互相叠加而构成了与光程差相对应的特殊混合色,称为干涉色。

影响干涉色的因素:

光程差的大小影响干涉色的颜色;α角影响干涉色的亮度。

光的干涉条件:

两束光振动频率相同,均同一平面内振动,且存在光程差。

10.如何利用锥光镜鉴定晶体的光性和轴性?

(了解)

答:

光性的鉴定:

鉴定一轴晶晶体的光性可利用相应补色器,通过确定黑十字所划分的四个象限或黑直臂两侧所对应的象限中光率体的分布形式来确定;在二轴晶晶体切片中,由黑十字或黑直臂位转动物台45°时,黑弯臂的顶点即光轴出露点,此时与光轴面垂直方向即为Nm,此时可以利用补色器,通过鉴定两光轴出露点连线平行于Ng或Np来确定是哪根光率体主轴,即可确定二轴晶光率体光性。

轴性的鉴定:

在锥光镜下,一轴晶和二轴晶晶体的干涉图像明显不同,对于一轴晶来说,转动物台,呈现的是黑十字或黑直臂交替出现,不出现弯曲的黑臂;对于二轴晶来说,则呈现黑十字与弯臂交替出现的干涉图像。

11.如何提高光学显微分析的分辨能力?

答:

1)选用更短的波长;2)采用折射率很高的材料;3)增大显微镜的孔径角。

12.阐述光学显微分析用光片制备方法。

答:

1)取样:

取样部位应有代表性,应包含所要研究的对象并满足研究的特定要求;

2)镶嵌:

对形状特殊或尺寸细小而不易握持的样品,需进行样品镶嵌;

3)磨光:

去除取样时引入的样品表层损伤,获得平整光滑的样品表面;

4)抛光:

去除细磨痕以获得平整无疵的镜面,去除变形层;

5)浸蚀:

清晰显示出材料的内部组织。

13.分析近场光学显微分析的原理及与传统光学显微分析的异同。

答:

原理:

在近场探测中,必须将探测器位于距物体一个波长以内的位置上,在场传播以前将其俘获,因此近场探测器位于距离物体表面纳米尺寸的位置上,既能移动又不碰到样品,所以只能使用点状探测器逐点成像的方法。

这种点状探测器首先将纳米尺寸的局部光信号收集,将其转变为电流,或者再发射到自由空间,或者以波导的方式将其传播到探测系统,将逐点采集的信息扫描成为二维图像。

异同:

1)照明光源的尺度和照明方法:

传统光学显微镜用扩展光源在远场照明样品;近场官学显微镜用纳米局域光源在纳米尺度的近场距离内照明样品;

2)成像方法:

传统光学显微镜用肉眼或成像仪器直接观察或接受放大的图像,近场光学显微镜用扫描技术使局域光源逐点网格状照明样品,然后由光电接收器接受光信号,借助计算机将图像勾画出来。

3)近场光学显微镜用探针来照明样品和探测信号。

14.为何近场光学显微镜可突破光学显微镜分辨率极限?

答:

一般近场光学显微镜分辨率:

30-50nm;

新型近场光学显微镜分辨率0.8nm,不但突破了λ/2的衍射极限,也使目前近场光学显微镜的分辨本领提高了近两个数量级。

第3章X射线衍射分析

1.试述X射线的定义、性质、连续X射线和特征X射线的产生、特点。

答:

X射线——由高速电子撞击物质的原子所产生的电磁波。

性质:

1)X射线是一种电磁波,具有波粒二象性;

2)X射线波长:

10-2—102A0

3)X射线的波长、振动频率和传播速度符合λ=c/v.

4)X射线可以看成具有一定能量E、动量P、质量m的X光流子

5)X射线具有很高的穿透能力,可以穿过黑纸和许多对于可见光不透明的物质。

6)X射线肉眼不能观察到,但可以使照相底片感光,在通过一些物质时,使物质原子中的外层电子发生跃迁发出可见光。

7)X射线能够杀死生物细胞和组织,

连续X射线:

强度随波长连续变化,构成连续谱。

X谱强度随X射线管的管电压增加而增大,最大强度所对应的波长变小,最短波长界限减小。

特征X射线:

波长一定、强度很大的特征谱只有当管电压超过一定激发电压时才产生,只取决于光管的阳极靶材料,不同靶材具有其特有的特征谱线。

2.X射线与物质的相互作用是什么?

答:

X射线与物质相互作用过程会产生物理、化学和生化过程,引起各种效应。

X射线可使一些物质发出可见的荧光;使离子固体发出黄褐色或紫色的光;破坏物质的化学键,使新键形成,促进物质的合成;引起生物效应,导致新陈代谢发生变化;X射线与物质之间的物理作用可分为X射线散射和吸收。

3.试述X射线衍射原理,布拉格方程和劳厄方程的物理意义。

答:

X射线衍射原理:

X射线作为一电磁波投射到晶体中时,会受到晶体中原子的散射,而散射波就好像是从原子中心发出,每一个原子中心发出的散射波又好比一个源球面波。

由于原子在晶体中是周期排列,这些散射球面波之间存在着固定的位相关系,它们之间会在空间产生干涉,结构导致在某些散射方向的球面波相互加强,而在某些方向上相互抵消,从而出现衍射现象,即在偏离原入射线方向上、只有特定的方向上出现散射线加强而存在衍射斑点,其余方向则无衍射斑点。

布拉格方程物理意义:

2dsinθ=λ

1)表达了晶面间距d、衍射方向θ和X射线波长λ之间的定量关系,是晶体结构分析的基本公式;

2)已知X射线的波长λ和掠射角θ,可计算晶面间距d;

3)已知晶体结构,可测定X射线的波长λ。

劳厄方程的物理意义:

从理论上解决了入射线波长、方向、点阵常数和单一原子列衍射线方向的相互关系;确定了衍射方向的基本方程。

4.试述X射线衍射实验方法,粉末衍射仪的工作方式、工作原理。

答:

实验方法:

粉末法、劳厄法和转晶法。

粉末衍射仪的工总方式:

连续式扫描、步进式扫描

工作原理:

X射线粉末衍射仪用具有一定发散度的特征X光束照射多晶平板样品,多晶平板样品中一部分被照射的小晶粒的同名衍射晶面及其等同晶面所产生的衍射线将在适当的方位聚焦而形成衍射强峰,被聚焦的那一部分衍射线所对应的同名晶面或等同晶面与光源和接收狭缝处在同一聚焦圆周上。

在测角仪扫描过程中,由光源狭缝、样品台轴心、和接收狭缝确定的聚焦园半径不断改变。

但在样品一定深度范围内总是存在与聚焦圆吻合的弧面,由于“同一圆周上的同弧圆周角相等”,组成多晶样品的各小晶粒中,凡处于与聚焦圆吻合的弧面上的,满足衍射矢量方程的同名衍射晶面及其等同晶面所产生的衍射线都将在狭缝处聚焦,并因此形成衍射线强峰。

5.试述X射线粉末衍射法物相定性分析过程及注意的问题。

答:

物相定性分析过程:

1)用粉末照相法或粉末衍射仪法获取被测试样物相的衍射图样;

2)通过对所获衍射图样的分析和计算,获得各衍射线条的2θ、d及相对强度大小;

3)使用检索手册,查寻物相PDF卡片号;

4)若是多物相分析,则在3)步完成后,对剩余的衍射线重新根据相对强度排序,重复3)步骤,直至全部衍射线能基本得到解释。

注意问题:

1)对试样分析前,尽可能详细了解样品来源、化学成分、工艺状况,观察外形、颜色等性质,为物相分析的检索工作提供线索;

2)尽可能根据试样的各种性能,在许可的条件下将其分离成单一物相后进行衍射分析;

3)尽可能避免衍射线重叠,提高粉末照相或衍射仪的分辨率;

4)d值处理精度要求高,检索时只允许小数点后第二位才能出现偏差;

5)特别要重视低角度区域的衍射实验数据;

6)多物相混合实验时,应耐心检索,力求全部数据都能合理解释;

7)物相定性分析过程中,尽可能与其他的相分析实验手段结合起来,互相配合,互相印证。

6.试述X射线粉末衍射仪法物相定量分析方法及其过程。

答:

物相定量分析方法:

外标法、内标法、基体冲洗法(K值法)

过程:

1)物相鉴定;

2)选择标样物相;

3)进行定标曲线的测定;

4)测定试样中标准物相S的强度或测定按要求制备试样中的待测物相及标样S物相制定衍射线强度;

5)用所测定的数据,按各自的方法计算出待测物相的质量分数。

7.比较X射线粉末多晶衍射仪法测定物质晶体结构与单晶衍射法测定物质晶体结构。

答:

多晶法样品制备、衍射实验和数据处理简单,但只能完成对晶体晶系的确定、衍射花样指数标定,点阵参数测定等结构测定中的部分工作,所以,多晶衍射只能进行简单晶体结构测定或复杂结构晶体测定的部分工作。

单晶衍射法样品制备、衍射实验和数据处理复杂,但可测定复杂结构。

8.简述X射线实验方法在现代材料研究中有哪些主要应用。

答:

1)X射线物相定性分析:

用于确定物质中的物相组成;

2)X射线物相定理分析:

用于测定某物相在物质中的含量;

3)X射线晶体结构分析:

用于推断测定晶体的结构。

10.X射线衍射实验主要有哪些方法?

它们各有哪些应用?

答:

X射线衍射方法:

粉末法、劳厄法、转晶法三种。

粉末法在晶体学研究中应用最广泛,试验方法及试样制备简单,所以在科学研究和实际生产中的应用不可缺少;而劳厄法和转晶法主要用于单晶体的研究,特别是在晶体结构的分析中必不可少。

第4章电子显微分析

1.如何提高显微镜分辨本领?

电子透镜的分辨本领受哪些条件的限制?

答:

所谓分辨本领,是指显微镜能分辨的样品上两点间的最小距离。

通常,我们以物镜的分辨本领定义显微镜的分辨本领。

确定光学透镜分辨本领d0的公式为

d0=0.61λ/nsinα,透镜的分辨本领主要取决于照明束波长λ。

要显著提高显微镜的分辨本领,必须探索一种波长比可见光短得多的照明源——电子束。

电子透镜的分辨本领随加速电压的提高而提高。

透镜的实际分辨本领除了与衍射效应有关外,还与透镜的像差有关。

对于光学透镜,已经可以采用凸透镜和凹透镜的组合等方法来矫正像差,使之对分辨本领的影响远远小于衍射效应的影响,但是电子透镜只有会聚镜,没有发散透镜,所有至今还没有找到能矫正球差的方法。

这样,像差对电子透镜分辨本领的限制就不容忽略了。

像差分球差、像散、畸变等,其中,球差是限制电子透镜分辨本领的最主要因素。

2.透射电子显微镜的成像原理是什么?

为什么必须小孔径成像?

答:

成像原理:

透射电镜通常采用热阴极电子枪来获得电子束作为照明源。

热阴极发射的电子,在阳极加速电压的作用下,高速的穿过阳极孔,然后被聚光镜聚成具有一定直径的束斑照射到样品上。

这种具有一定能量的电子束与样品发生作用,产生反应样品微区的厚度、平均原子序数、晶体结构或位相差别的多种信息。

透过样品的电子束强度,其取决于这些信息,经过物镜聚焦放大在平面上形成一幅反应这些信息的透射电子像,经过中间镜和投影镜进一步放大,在荧光屏上得到三级放大的最终电子图像,还可将其记录在电子感光板或胶卷上。

为了确保透射电镜的分辨本领,物镜的孔径半角必须很小,即采用小孔径成像。

一般是在物镜的背焦平面上放一称为物镜光阑的小孔径的光阑来达到这个目的。

由于物镜放大倍数大,其物平面接近焦点,若物镜光阑的直径为D,则物镜孔径半角α=D/2f,小孔径成像意味着只允许样品散射角小于σ的散射电子通过物镜光阑成像,所有大于α的都被物镜光阑档掉,不参与成像。

3.扫描电子显微镜的工作原理是什么?

答:

工作原理:

由三极电子枪发射出来的电子束,在加速电压作用下,经过2-3个电子透镜聚焦后,在样品表面按顺序逐行进行扫描,激发样品产生各种物理信号。

这些物理信号的强度随样品表面特征而变,它们分别被相应的接收器接受,经放大器按顺序成比例的放大后,送到显像管的栅极上,用来同步调制显像管的电子束强度,即显像管荧光屏上的亮度。

供给阴极射线显像管的扫描线圈的电源,此电源发出的锯齿波信号同时控制两束电子束作同步扫描。

因此,样品上电子束的位置与显像管荧光屏上电子束的位置是一一对应的。

这样,在荧光屏上就形成一幅与样品表面特征相对应的画面。

4.相对光学显微镜,透射电子显微镜(TEM)和扫描电镜(SEM)各有哪些优点?

答:

TEM优点:

1)分辨率高,常规电镜的分辨率极限是2-3埃,可实现的最高线分辨率为1埃左右;2)放大倍率大,有效放大倍数在106,而光学显微镜只达到几千:

3)景深较大,焦长较长,不仅可以获得样品形貌,颗粒大小及分布等信息,还可以获得特定区域的元素及物相结构信息。

SEM优点:

1)分辨本领比较高;2)放大倍数为20-20000倍,并且连续可调,介于光学显微镜和投射电镜之间,在某种程度上弥补了光学显微镜和透射电镜的不足;3)景深大,视野大,成像富立体感;4)样品制备简单;5)可直接观察大块试样。

5.电子探针X射线显微分析仪有哪些工作模式,能谱仪和谱仪的特点是什么?

答:

工作模式:

点线面三种。

能谱仪的特点:

1)所用的Si探测器尺寸小,可装在靠近样品的区域;

2)分析速度快,可在2-3分钟内完成元素定性全分析;

3)能谱仪不受聚焦圆的限制;

4)工作束流小,对样品污染小;

5)能进行低倍X射线扫描成像,得到大视域的元素分布图;

6)分辨本领比较低;

7)峰背比小;

8)Si探测器必须在液氮温度下使用,维护费用高。

6.为什么透射电镜的样品要求非常薄,而扫描电镜无此要求?

答:

透射电镜中,电子束穿透样品成像,而电子束的投射本领不大,这就要求将试样制成很薄的薄膜样品;扫描电镜是通过电子束轰击样品表面激发产生的物理信号成像的,电子束不用穿过样品。

7.电镜有哪些性质?

环境扫描电镜中“环境”指什么?

答:

1)用电子束作照明源,显微镜的分辨本领要高得多,分辨本领:

2-3nm,可以直接分辨原子,并且还能进行纳米尺寸的晶体结构及化学组成的分析。

2)但电磁透镜的孔径半角的典型值仅为10-2-10-3rad。

3)几何像差:

由透镜磁场几何形状上的缺陷而造成的。

4)色差:

由电子波的波长发生一定幅度的改变而造成的。

环境扫描电镜中的“环境“并非真正意义上的大气环境,与传统SEM样品室高达10-3-10-6Torr的真空度相比,ESEM样品室的真空度很低,从1Torr-20Torr,非常接近大气环境,但不等同于760Torr的大气环境。

8.高分辨电镜是否指分辨率高的电镜?

答:

高分辨电镜可用来观察晶体的点阵像或单原子像等所谓的高分辨像。

这种高分辨像直接给出晶体结构在电子束方向上的投影,因此又称结构像。

加速电压为100KV或高于100KV的透射电镜,只要分辨本领足够高,在适当的条件下,就可以得到结构像或单原子像。

不是所有分辨率高的电镜都能进行结构像的分析。

9.选用电子显微分析仪时应从哪几方面考虑?

答:

样品、要求、费用、时效等方面考虑。

10.电子探针仪与X射线谱仪从工作原理和应用上有哪些区别?

答:

电子探针仪的工作原理:

由莫赛莱定律λ=K/(Z-σ)2可知X射线特征谱线的波长和产生此射线的样品材料的原子序数有一确定的关系。

只要测出特征X射线的波长,就可确定相应元素的原子序数。

又因为某种元素的特征X射线强度与该元素在样品中的浓度成比例,所有只要测出这种特征X射线的强度,就可计算出该元素的相对含量。

X射线衍射仪的工作原理:

布拉格方程2dsinθ=λ

波谱仪利用某些晶体对X射线的衍射作用来达到使不同波长分散的目的。

若有一束包括不同波长的X射线照射到一个晶体表面上,平行于该晶体表面的晶面的间距为d,入射X射线与该晶面的夹角为θ,则其中只有满足布拉格方程的那个波长的X射线发生衍射。

若再与入射X射线方向成2θ的方向上设置X射线检测器,就可以检测到这个特定波长的X射线及其强度。

11.与X射线衍射相比,(尤其透射电镜中的)电子衍射的特点是什么?

答:

1)透射电镜常用双聚光镜照明系统,束斑直径1-2μm,经过双聚光镜的照明束相干性较好。

2)透射电镜有三级以上透镜组成的成像系统,借助它可以提高电子衍射相机长度。

3)可以通过物镜和中间镜的密切配合,进行选区电子衍射,使成像区域和电子衍射区域统一起来,达到样品微区形貌分析和原位晶体学性质测定的目的。

12.选区电子衍射和选区成像的工作原理是?

这两种工作方式有什么应用意义?

答:

“选区电子衍射“指在物镜像平面上放置一个光阑限定产生衍射花样的样品区域,从而分析该微区范围内样品的晶体结构特性。

当电镜以成像方式工作时,中间镜物平面与物镜像平面重合,荧光屏上显示样品的放大图像。

此时,在物镜像平面内插入一个孔径可变的选区光阑,光阑孔套住想要分析的那个微区。

因为在物镜适焦的情况下,物平面上同一物点所散射的电子将会聚于像平面上一点,所有对应于像平面上光阑孔的选择范围A‘B‘,只有样品上AB微区以内物点的散射波可以穿过光阑孔进入中间镜和投射镜参与成像,选区以外的物点C产生的衍射波则全被档掉。

当调节中间镜的激磁电流,使电镜转变为衍射方式操作时,中间镜物平面与物镜背焦面相重合。

尽管物镜背焦平面上第一幅花样是由受到入射束幅照的全部样品区域内晶体的衍射所产生,但只有AB微区以内物点散射的电子波可以通过选区光阑进入下面的投射系统,所有荧屏上显示的只限于选区范围内晶体所产生的衍射花样,实现了选区形貌观察与晶体结构分析的微区对应性。

这两种方法可以研究我们感兴趣的微区的晶体产生的衍射花样,从而实现选区观察与衍射的对应。

第5章热分析

1.简述差热分析的原理,并画出DTA装置示意图。

答:

原理:

把被测试样和一种参比物置放在同样的热条件下,进行加热或冷却。

在这个过程中,试样在某一特定温度下会发生物理化学反应引起热效应变化:

即试样测的温度在某一区间会变化,不跟随程序温度升高,而是有时高于或低于程度温度,而参比物一侧在整个加热过程中始终不发生热效应,它的温度一直跟随程序温度升高。

两者之间就出现一个温度差,然后利用某种方式将温差记录下来,就得到差热曲线,再针对这曲线进行分析研究。

2.为何用外延始点作为DTA曲线的反应起始温度?

答:

外延始点:

指峰的起始边陡峭部分的切线与外延基线的交点。

国际热分析协会ICTA对大量的试样测定结构表明,外延起始温度与其它实验测得的反应起始温度最为接近,因此用外延始点作为DTA曲线的反应起始温度。

3.热分析用的参比物有何性能要求?

答:

参比物在一定温度下不发生分解、相变、破坏的物质,要求在热分析过程中热性质、质量、密度等与试样尽量相近。

4.影响差热分析的仪器、试样、操作因素是什么?

答:

仪器因素:

1)炉子的结构和尺寸;2)坩埚材料和形状;

3)差热电偶性能;4)测温热电偶与试样之间的相对位置;

5)记录仪或其它显示系统精度。

试样因素:

1)热容量和热导率的变化;2)试样的颗粒度、用量及装填密度;

3)试样的结晶度、纯度;4)参比物

操作因素:

1)加热速度;

慢:

峰形:

宽平滞后小

快:

峰形:

尖长滞后大

2)炉内压力和气氛;

①压力:

减小:

分解温度降低低温移动

增大:

分解温度升高高温移动

②气氛:

不同气氛反应不同——温度不同

3)记录仪量程和走纸速度。

5.为何DTA仅能进行定性和半定量分析?

DSC是如何实现定量分析的?

答:

在差热分析中当试样发生热效应时,试样本身的升温速度是非线性的,而且在发生热效应时,试样与参比物与及试样周围的环境有较大的温差,它们之间会进行热传递,降低了热效应测量的灵敏度和精确度,所有DTA仅能进行定性和半定量分析。

而DSC克服了这些不足,通过对试样因发生热效应而发生的能量变化进行及时的应有的补偿,保持试样与参比物之间温度始终保持相同,无温差、无热传递,使热损失小,检测信号大,可进行实现定量分析。

6.阐述DSC技术的原理和特点。

答:

原理:

DSC技术是在程序控制温度下,测量输入到试样和参比物的能量差随温度和时间变化的一种技术。

差式扫描热分析法就是为克服差热分析在定量测定上存在的这些不足而发展起来的一种新的热分析技术。

该法通过对试样因发生热效应而发生的能量变化进行及时的应有的补偿,保持试样与参比物之间温度始终保持相同,无温差、无热传递,使热损失小,检测信号大,因此在灵敏度和精度方面都大有提高。

特点:

由于试样用量少,试样内的温度梯度较小且气体的扩散阻力下降,对于功率补偿型DSC有热阻影响小的特点。

7.简述DTA、DSC分析样品要求和结果分析方法。

答:

DTA分析样品要求:

应选择热容量和热导率和试样相近的作为参比物;试样的颗粒度要求:

100目—300目;试样的结晶度、纯度和离子取代要求:

结晶度好,峰形尖锐,洁净度不好,则峰面积要小,纯度、离子取代同样会影响DTA曲线;试样的用量:

以少为原则;试样的装填要求:

薄而均匀,试样和参比物的装填一样情况一致;参比物:

整个测温范围无热反应,比热与导热性与试样相近,粒度与试样相近,

DTA结果分析方法:

解释曲线上每个峰谷出现的原因,从而分析被测物质是由哪些物质组成的。

差热分析的峰只表示试样的热效应,本身不反应更多的物理化学本质,因此,单靠差热曲线很难做正确的解释。

DSC分析样品要求:

试样用量少,试样粒度均匀。

DSC结果分析方法:

1)称量法:

用硫酸纸沿确定的峰面积界限描剪下来,用微量天平称量后进行换算,其读数误差范围在2%之内;

2)数格法:

在已确定

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > IT计算机 > 电脑基础知识

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2