高中生物常识性知识点必知.docx

上传人:b****4 文档编号:6106047 上传时间:2023-05-09 格式:DOCX 页数:18 大小:68.65KB
下载 相关 举报
高中生物常识性知识点必知.docx_第1页
第1页 / 共18页
高中生物常识性知识点必知.docx_第2页
第2页 / 共18页
高中生物常识性知识点必知.docx_第3页
第3页 / 共18页
高中生物常识性知识点必知.docx_第4页
第4页 / 共18页
高中生物常识性知识点必知.docx_第5页
第5页 / 共18页
高中生物常识性知识点必知.docx_第6页
第6页 / 共18页
高中生物常识性知识点必知.docx_第7页
第7页 / 共18页
高中生物常识性知识点必知.docx_第8页
第8页 / 共18页
高中生物常识性知识点必知.docx_第9页
第9页 / 共18页
高中生物常识性知识点必知.docx_第10页
第10页 / 共18页
高中生物常识性知识点必知.docx_第11页
第11页 / 共18页
高中生物常识性知识点必知.docx_第12页
第12页 / 共18页
高中生物常识性知识点必知.docx_第13页
第13页 / 共18页
高中生物常识性知识点必知.docx_第14页
第14页 / 共18页
高中生物常识性知识点必知.docx_第15页
第15页 / 共18页
高中生物常识性知识点必知.docx_第16页
第16页 / 共18页
高中生物常识性知识点必知.docx_第17页
第17页 / 共18页
高中生物常识性知识点必知.docx_第18页
第18页 / 共18页
亲,该文档总共18页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

高中生物常识性知识点必知.docx

《高中生物常识性知识点必知.docx》由会员分享,可在线阅读,更多相关《高中生物常识性知识点必知.docx(18页珍藏版)》请在冰点文库上搜索。

高中生物常识性知识点必知.docx

高中生物常识性知识点必知

高中生物常识性知识点(必知)

一、生物学中常见化学元素及作用:

1、Ca:

人体缺之会患骨软化病,血液中Ca2+含量低会引起抽搐,过高则会引起肌无力。

血液中的Ca2+具有促进血液凝固的作用,如果用柠檬酸钠或草酸钠除掉血液中的Ca2+,血液就不会发生凝固。

属于植物中不能再得用元素,一旦缺乏,幼嫩的组织会受到伤害。

2、Fe:

血红蛋白的组成成分,缺乏会患缺铁性贫血。

血红蛋白中的Fe是二价铁,三价铁是不能利用的。

属于植物中不能再得用元素,一旦缺乏,幼嫩的组织会受到伤害。

3、Mg:

叶绿体的组成元素。

很多酶的激活剂。

植物缺镁时老叶易出现叶脉失绿。

4、B:

促进花粉的萌发和花粉管的伸长,缺乏植物会出现花而不实。

5、I:

甲状腺激素的成分,缺乏幼儿会患呆小症,成人会患地方性甲状腺肿。

6、K:

血钾含量过低时,会出现心肌的自动节律异常,并导致心律失常。

7、N:

N是构成叶绿素、ATP、蛋白质和核酸的必需元素。

N在植物体内形成的化合物都是不稳定的或易溶于水的,故N在植物体内可以自由移动,缺N时,幼叶可向老叶吸收N而导致老叶先黄。

N是一种容易造成水域生态系统富营养化的一种化学元素,在水域生态系统中,过多的N与P配合会造成富营养化,在淡水生态系统中的富营养化称为“水华”,在海洋生态系统中的富营养化称为“赤潮”。

动物体内缺N,实际就是缺少氨基酸,就会影响到动物体的生长发育。

8、P:

P是构成磷脂、核酸和ATP的必需元素。

植物体内缺P,会影响到DNA的复制和RNA的转录,从而影响到植物的生长发育。

P还参与植物光合作用和呼吸作用中的能量传递过程,因为ATP和ADP中都含有磷酸。

P也是容易造成水域生态系统富营养化的一种元素。

植物缺P时老叶易出现茎叶暗绿或呈紫红色,生育期延迟。

9、Zn:

是某些酶的组成成分,也是酶的活化中心。

如催化吲哚和丝氨酸合成色氨酸的酶中含有Zn,没有Zn就不能合成吲哚乙酸。

所以缺Zn引起苹果、桃等植物的小叶症和丛叶症,叶子变小,节间缩短。

二、生物学中常用的试剂:

1、斐林试剂:

成分:

0.1g/mlNaOH(甲液)和0.05g/mlCuSO4(乙液)。

用法:

将斐林试剂甲液和乙液等体积混合,再将混合后的斐林试剂倒入待测液,水浴加热或直接加热,如待测液中存在还原糖,则呈砖红色。

2、班氏糖定性试剂:

为蓝色溶液。

和葡萄糖混合后沸水浴会出现砖红色沉淀。

用于尿糖的测定。

3、双缩脲试剂:

成分:

0.1g/mlNaOH(甲液)和0.01g/mlCuSO4(乙液)。

用法:

向待测液中先加入2ml甲液,摇匀,再向其中加入3~4滴乙液,摇匀。

如待测中存在蛋白质,则呈现紫色。

4、苏丹Ⅲ:

用法:

取苏丹Ⅲ颗粒溶于95%的酒精中,摇匀。

用于检测脂肪。

可将脂肪染成橘黄色(被苏丹Ⅳ染成红色)。

5、二苯胺:

用于鉴定DNA。

DNA遇二苯胺(沸水浴)会被染成蓝色。

6、甲基绿:

用于鉴定DNA。

DNA遇甲基绿(常温)会被染成蓝绿色。

7、50%的酒精溶液:

在脂肪鉴定中,用苏丹Ⅲ染液染色,再用50%的酒精溶液洗去浮色。

8、75%的酒精溶液:

用于杀菌消毒,75%的酒精能渗入细胞内,使蛋白质凝固变性。

低于这个浓度,酒精的渗透脱水作用减弱,杀菌力不强;而高于这个浓度,则会使细菌表面蛋白质迅速脱水,凝固成膜,妨碍酒精透入,削弱杀菌能力。

75%的酒精溶液常用于手术前、打针、换药、针灸前皮肤脱碘消毒以及机械消毒等。

9、95%的酒精溶液:

冷却的体积分数为95%的酒精可用于凝集DNA。

10、15%的盐酸:

和95%的酒精溶液等体积混合可用于解离根尖。

11、龙胆紫溶液:

(浓度为0.01g/ml或0.02g/ml)用于染色体着色,可将染色体染成紫色,通常染色3~5分钟。

(也可以用醋酸洋红染色)

12、20%的肝脏、3%的过氧化氢、3.5%的氯化铁:

用于比较过氧化氢酶和Fe3+的催化效率。

(新鲜的肝脏中含有过氧化氢酶)

13、3%的可溶性淀粉溶液、3%的蔗糖溶液、2%的新鲜淀粉酶溶液:

用于探索淀粉酶对淀粉和蔗糖的作用实验。

14、碘液:

用于鉴定淀粉的存在。

遇淀粉变蓝。

15、丙酮:

用于提取叶绿体中的色素。

16、层析液:

(成分:

20份石油醚、2份丙酮、和1份苯混合而成,也可用93号汽油)可用于色素的层析,即将色素在滤纸上分离开。

17、二氧化硅:

在色素的提取的分离实验中研磨绿色叶片时加入,可使研磨充分。

18、碳酸钙:

研磨绿色叶片时加入,可中和有机酸,防止在研磨时叶绿体中的色素受破坏。

19、0.3g/mL的蔗糖溶液:

相当于30%的蔗糖溶液,比植物细胞液的浓度大,可用于质壁分离实验。

20、0.1g/mL的柠檬酸钠溶液:

与鸡血混合,防凝血。

21、氯化钠溶液:

①可用于溶解DNA。

当氯化钠浓度为2mol/L、0.015mol/L时DNA的溶解度最高,在氯化钠浓度为0.14mol/L时,DNA溶解度最高。

②浓度为0.9%时可作为生理盐水。

22、胰蛋白酶:

①可用来分解蛋白质;②可用于动物细胞培养时分解组织使组织细胞分散。

23、秋水仙素:

人工诱导多倍体试剂。

用于萌发的种子或幼苗,可使染色体组加倍,原理是可抑制正在分裂的细胞纺锤体的形成。

24、氯化钙:

增加细菌细胞壁的通透性(用于基因工程的转化,使细胞处于感受态)

三、生物学中常见的物理、化学、生物方法及用途:

1、致癌因子:

物理因子:

电离辐射、X射线、紫外线等。

化学因子:

砷、苯、煤焦油

病毒因子:

肿瘤病毒或致癌病毒,已发现150多种病毒致癌。

2、基因诱变:

物理因素:

Χ射线、γ射线、紫外线、激光

化学因素:

亚硝酸、硫酸二乙酯

3、细胞融合:

物理方法:

离心、振动、电刺激

化学方法:

PEG(聚乙二醇)

生物方法:

灭活病毒(可用于动物细胞融合)

四、生物学中常见英文缩写名称及作用

1.ATP:

三磷酸腺苷,新陈代谢所需能量的直接来源。

ATP的结构简式:

A—P~P~P,其中:

A代表腺苷,P代表磷酸基,~代表高能磷酸键,—代表普通化学键

2.ADP:

二磷酸腺苷

3.AMP:

一磷酸腺苷

4.AIDS:

获得性免疫缺陷综合症(艾滋病)

5.DNA:

脱氧核糖核酸,是主要的遗传物质。

6.RNA:

核糖核酸,分为mRNA、tRNA和rRNA。

7.cDNA:

互补DNA

8.Clon:

克隆

9.ES(EK):

胚胎干细胞

10.GPT:

谷丙转氨酶,能把谷氨酸上的氨基转移给丙酮酸,它在人的肝脏中含量最多,作为诊断是否患肝炎的一项指标。

11.HIV:

人类免疫缺陷病毒。

艾滋病是英语“AIDS”中文名称。

12.HLA:

人类白细胞抗原,器官移植的成败,主要取决于供者与受者的HLA是否一致或相近。

13.HGP:

人类基因组计划

14.IAA:

吲哚乙酸(生长素)

15.CTK:

细胞分裂素

16.NADP+:

辅酶Ⅱ

17.NADPH([H]):

还原型辅酶Ⅱ

18.NAD+:

辅酶Ⅰ

19.NADH([H]):

还原型辅酶Ⅰ

20.PCR:

聚合酶链式反应,是生物学家在实验室以少量样品制备大量DNA的生物技术,反应系统中包括微量样品基因、DNA聚合酶、引物、4种脱氧核苷酸等。

21.PEG:

聚乙二醇,诱导细胞融合的诱导剂。

22.PEP:

磷酸烯醇式丙酮酸,参与C4途径。

23.SARS病毒:

(SARS是“非典”学名的英文缩写)

五、人体正常生理指标:

1、血液pH:

7.35~7.45

2、血糖含量:

80~120mg/dl。

高血糖:

130mg/dl,肾糖阈:

160~180mg/dl,早期低血糖:

50~60mg/dl,晚期低血糖:

<45mg/dl。

3、体温:

37℃左右。

直肠(36.9℃~37.9℃,平均37.5℃);口腔(36.7℃~37.7℃,平均37.2℃);腋窝(36.0℃~37.4℃,平均36.8℃)

4、总胆固醇:

110~230mg/dl血清

5、胆固醇脂:

90~130mg/dl血清(占总胆固醇量的60%~80%)

6、甘油三脂:

20~110mg/dl血清

六、高中生物常见化学反应方程式:

1、ATP合成反应方程式:

ATP→ADP+Pi+能量

2、光合反应:

总反应方程式:

6CO2+12H2O→C6H12O6+6H2O+6O2

分步反应:

①光反应:

2H2O→4[H]+O2 ADP+Pi+能量→ATP NADP++2e+H+→NADPH

②暗反应:

CO2+C5→C3  2C3→C6H12O6+C5

3、呼吸反应:

(1)有氧呼吸总反应方程式:

C6H12O6+6H2O+6O2→6CO2+12H2O+能量

分步反应:

①C6H12O6→2C3H4O3+4[H]+2ATP(场所:

细胞质基质)

②2C3H4O3+6H2O→6CO2+20[H]+2ATP(场所:

线粒体基质)

③24[H]+6O2→12H2O+34ATP(场所:

线粒体内膜)

(2)无氧呼吸反应方程式:

(场所:

细胞质基质)

①C6H12O6→2C2H5OH+2CO2+2ATP

②C6H12O6→2C3H6O3+2ATP

4、氨基酸缩合反应:

n氨基酸→n肽+(n-1)H2O

5、固氮反应:

N2+e+H++ATP→NH3+ADP+Pi

七、生物学中出现的人体常见疾病:

①风湿性心脏病、类风湿性关节炎、系统性红斑狼(自身免疫病。

免疫机制过高)

②艾滋病(免疫缺陷病)胸腺素可促进T细胞的分化、成熟,临床上常用于治疗细胞免疫功能缺陷功低下患者。

八、人类几种遗传病及显隐性关系:

类  别

名  称

单基因

遗传病

常染色体遗传

隐性

白化病、先天性聋哑、苯丙酮尿症

显性

多指、并指、短指、软骨发育不全

性(X)染色体遗传

隐性

红绿色盲、血友病、果蝇白眼、进行性肌营养不良

显性

抗维生素D佝偻病

多基因遗传病

唇裂、无脑儿、原发性高血压、青少年型糖尿病

染色体异常遗传病

常染色体病

数目改变

21三体综合症(先天愚型)

结构改变

猫叫综合症

性染色体病

性腺发育不良

九、高中生物学中涉及到的微生物:

1、病毒类:

无细胞结构,主要由蛋白质和核酸组成,包括病毒和亚病毒(类病毒、拟病毒、朊病毒)

①动物病毒:

RNA类(脊髓灰质炎病毒、狂犬病毒、麻疹病毒、腮腺炎病毒、流感病毒、艾滋病病毒、口蹄疫病毒、脑膜炎病毒、SARS病毒)        

DNA类(痘病毒、腺病毒、疱疹病毒、虹彩病毒、乙肝病毒)

②植物病毒:

RNA类(烟草花叶病毒、马铃薯X病毒、黄瓜花叶病毒、大麦黄化病毒等)

③微生物病毒:

噬菌体

2、原核类:

具细胞结构,但细胞内无核膜和核仁的分化,也无复杂的细胞器,包括:

细菌(杆状、球状、螺旋状)、放线菌、蓝细菌、支原体、衣原体、立克次氏体、螺旋体。

①细菌:

三册书中所涉及的所有细菌的种类:

乳酸菌、硝化细菌(代谢类型);

肺炎双球菌S型、R型(遗传的物质基础);

结核杆菌和麻风杆菌(胞内寄生菌);

根瘤菌、圆褐固氮菌(固氮菌);

大肠杆菌、枯草杆菌、土壤农杆菌(为基因工程提供运载体,也可作为基因工程的受体细胞);

苏云金芽孢杆菌(为抗虫棉提供抗虫基因);

假单孢杆菌(分解石油的超级细菌);

甲基营养细菌、谷氨酸棒状杆菌、黄色短杆菌(微生物的代谢);

链球菌(一般厌氧型);产甲烷杆菌(严格厌氧型)等

②放线菌:

是主要的抗生素产生菌。

它们产生链霉素、庆大霉素、红霉素、四环素、环丝氨酸、多氧霉素、环已酰胺、氯霉素和磷霉素等种类繁多的抗生素(85%)。

繁殖方式为分生孢子繁殖。

③衣原体:

砂眼衣原体。

3、灭菌:

是指杀死一定环境中所有微生物的细胞、芽孢和孢子。

实验室最常用的是高压蒸汽灭菌法。

4、真核类:

具有复杂的细胞器和成形的细胞核,包括:

酵母菌、霉菌(丝状真菌)、蕈菌(大型真菌)等真菌及单细胞藻类、原生动物(大草履虫、小草履虫、变形虫、间日疟原虫等)等真核微生物。

霉菌:

可用于发酵上工业,广泛的用于生产酒精、柠檬酸、甘油、酶制剂(如蛋白酶、淀粉酶、纤维素酶等)、固醇、维生素等。

在农业上可用于饲料发酵、生产植物生长素(如赤酶霉素)、杀虫农药(如白僵菌剂)、除草剂等。

危害如可使食物霉变、产生毒素(如黄曲霉毒素具致癌作用、镰孢菌毒素可能与克山病有关)。

常见霉菌主要有毛霉、根霉、曲霉、青霉、赤霉菌、白僵菌、脉胞菌、木霉等。

5、微生物代谢类型:

①光能自养:

光合细菌、蓝细菌(水作为氢供体)紫硫细菌、绿硫细菌(H2S作为氢供体,严格厌氧)

2H2S+CO2→(CH2O)+H2O+2S

②光能异养:

以光为能源,以有机物(甲酸、乙酸、丁酸、甲醇、异丙醇、丙酮酸、和乳酸)为碳源与氢供体营光合生长。

阳光细菌利用丙酮酸与乳酸用为唯一碳源光合生长。

③化能自养:

硫细菌、铁细菌、氢细菌、硝化细菌、产甲烷菌(厌氧化能自养细菌)

CO2+4H2→CH4+2H2O

④化能异养:

寄生、腐生细菌。

⑤好氧细菌:

硝化细菌、谷氨酸棒状杆菌、黄色短杆菌等

⑥厌氧细菌:

乳酸菌、破伤风杆菌等

⑦中间类型:

红螺菌(光能自养、化能异养、厌氧[兼性光能营养型])、氢单胞菌(化能自养、化能异养[兼性自养])、酵母菌(需氧、厌氧[兼性厌氧型])

⑧固氮细菌:

共生固氮微生物(根瘤菌等)、自生固氮微生物(圆褐固氮菌)

十、高中生物学中涉及到的较特殊的细胞:

1、红细胞:

无线粒体、无细胞核

2、精子:

不具有分裂能力、仅有及少的细胞质在尾总部

3、神经细胞:

具突起,不具有分裂能力

十一、内分泌系统:

1、甲状腺:

位于咽下方。

可分泌甲状腺激素。

2、肾上腺:

分皮质和髓质。

皮质可分泌激素约50种,都属于固醇类物质,大体可为三类。

①糖皮质激素 如可的松、皮质酮、氢化可的松等。

他们的作用是使蛋白质和氨基酸转化为葡萄糖;使肝脏将氨基酸转化为糖原;并使血糖增加。

此外还有抗感染和加强免疫功能的作用。

②盐皮质激素 如醛固酮、脱氧皮质酮等。

此类激素的作用是促进肾小管对钠的重吸收,抑制对钾的重吸收,因而也促进对钠和水的重吸收。

③髓质可分泌两种激素即肾上腺素和甲肾上腺素,两者都是氨基酸的衍生物,功能也相似,主要是引起人或动物兴奋、激动,如引起血压上升、心跳加快、代谢率提高,同时抑制消化管蠕动,减少消化管的血流,其作用在于动员全身的潜力应付紧急情况。

3、脑垂体:

分前叶(腺性垂体)和后叶(神经性垂体),后叶与下丘脑相连。

前叶可分泌生长激素(191氨基酸)、促激素(促甲状腺激素、促肾上腺皮质激素、促性腺激素)、催乳素(199氨基酸)。

后叶的激素有催产素(OXT)和抗利尿激素(ADH)(升压素)(都为含9个氨基酸的短肽),是由下丘脑分泌后运至垂体后叶的。

4、下丘脑:

是机体内分泌系统的总枢纽。

可分泌激素如促肾上腺皮质激素释放因子、促甲状腺激素释放激素、促性腺激素释放激素、生长激素释放激素、生长激素释放抑制激素、催乳素释放因子、催乳素释放

制因子等。

5、性腺:

主要是精巢和卵巢。

可分泌雄性激素、雌性激素、孕酮(黄体酮)。

6、胰岛:

a细胞可分泌胰高血糖素(29个氨基酸的短肽),b细胞可分泌胰岛素(51个氨基酸的蛋白质),两者相互拮抗。

7、胸腺:

分泌胸腺素,有促进淋巴细胞的生长与成熟的作用,因而和机体的免疫功能有关。

化学性质

激素名称

来源

肽、蛋白质类激素(由脑和消化管等部位所分泌)

促甲状腺激素释放激素、促性腺激素释放激素

下丘脑、中枢神经系统其它部位

生长激素释放激素、促肾上腺皮质激素释放因子、催乳素释放因子(抑制因子)、

下丘脑

抗利尿激素、催产素

下丘脑、神经垂体

促甲状腺激素、催乳素、生长激素

腺垂体

胸腺素

胸腺

胰岛素、胰高血糖素

胰岛B细胞、胰岛A细胞

胺类激素(含N)

肾上腺素

肾上腺髓质

甲状腺激素

甲状腺

类固醇激素

糖皮质激素、糖皮质类固醇、醛固酮

肾上腺皮质

性激素

性腺

十二、高中生物教材中的育种知识

1.诱变育种

(1)原理:

基因突变

(2)方法:

用物理因素(如X射线、γ射线、紫外线、中子、激光、电离辐射等)或化学因素(如亚硝酸、碱基类似物、硫酸二乙酯、秋水仙素等各种化学药剂)或空间诱变育种(用宇宙强辐射、微重力等条件)来处理生物。

(3)发生时期:

有丝分裂间期或减数分裂第一次分裂间期

(4)优点:

能提高变异频率,加速育种进程,可大幅度改良某些性状,创造人类需要的变异类型,从中选择培育出优良的生物品种;变异范围广。

(5)缺点:

有利变异少,须大量处理材料;诱变的方向和性质不能控制。

改良数量性状效果较差,具有盲目性。

(6)举例:

青霉素高产菌株、太空椒、高产小麦、“彩色小麦”等

2.杂交育种

(1)原理:

基因重组

(2)方法:

连续自交,不断选种。

(不同个体间杂交产生后代,然后连续自交,筛选所需纯合子)

(3)发生时期:

有性生殖的减数分裂第一次分裂后期或四分体时期

(4)优点:

使同种生物的不同优良性状集中于同一个个体,具有预见性。

(5)缺点:

育种年限长,需连续自交才能选育出需要的优良性状。

(6)举例:

矮茎抗锈病小麦等 

3.多倍体育种

(1)原理:

染色体变异

(2)方法:

秋水仙素处理萌发的种子或幼苗。

(3)优点:

可培育出自然界中没有的新品种,且培育出的植物器官大,产量高,营养丰富。

(4)缺点:

结实率低,发育延迟。

(5)举例:

三倍体无子西瓜、八倍体小黑麦

4.单倍体育种

(1)原理:

染色体变异

(2)方法:

花药离体培养获得单倍体植株,再人工诱导染色体数目加倍。

(3)优点:

自交后代不发生性状分离,能明显缩短育种年限,加速育种进程。

(4)缺点:

技术相当复杂,需与杂交育种结合,其中的花药离体培养过程需要组织培养技术手段的支持,多限于植物。

(5)举例:

“京花一号”小麦

5.基因工程育种(转基因育种)

(1)原理:

基因重组

(2)方法:

基因操作(目的基因的获取→基因表达载体的构建→将目的基因导入受体细胞→目的基因的检测与鉴定)

(3)优点:

目的性强,可以按照人们的意愿定向改造生物;育种周期短。

(4)缺点:

可能会引起生态危机、必须考虑转基因生物的安全性、技术难度大。

(5)举例:

抗病转基因植物、抗逆转基因植物、转基因延熟番茄、转基因动物(转基因鲤鱼)等

6.细胞工程育种

方式

植物组织培养

植物体细胞杂交

细胞核移植

原理

植物细胞的全能性

植物细胞的全能性、植物细胞膜的流动性

动物细胞核的全能性

方法

离体的植物器官、组织或细胞→愈伤组织→根、芽→植物体

去掉细胞壁→诱导原生质体融合→组织培养

核移植→胚胎移植

优点

快速繁殖、培育无病毒植株等

克服远缘杂交不亲和的障碍,培育出作物新品种

繁殖优良品种,用于保存濒危物种,有选择地繁殖某性别的动物

缺点

技术要求高、培养条件严格

技术复杂,难度大;需植物组织培养等技术

导致生物品系减少,个体生存能力下降。

举例

试管苗的培育、培养转基因植物

培育“番茄马铃薯”杂种植株

“多利”羊等克隆动物的培育

7.植物激素育种

(1)原理:

适宜浓度的生长素可以促进果实的发育

(2)方法:

在未受粉的雌蕊柱头上涂上一定浓度的生长素类似物溶液,子房就可以发育成无子果实。

(3)优点:

由于生长素所起的作用是促进果实的发育,并不能导致植物的基因型的改变,所以该种变异类型是不遗传的。

(4)缺点:

该种方法只适用于植物。

(5)举例:

无子番茄的培育

十三、自然界物质循环:

1、碳循环:

2、氮循环:

3、硫循环:

 

生物家及其成就

19世纪30年代,德国植物学家施莱登(M.J.Sehleiden,18o4—1881)和动物学家施旺(T.Schwann,1810—1882)提出了细胞学说,指出细胞是一切动植物结构的基本单位。

1859年,英国生物学家达尔文(C.R.Darwin,1809—1882)出版了《物种起源》一书,科学地阐述了以自然选择学说为核心的生物进化理论。

1900年,孟德尔(G.Mendel,1822-1884)发现的遗传定律被重新提出,生物学迈进第2个阶段——实验生物学阶段。

1944年,美国生物学家艾弗里(O.Avery,1877-1955)用细菌做实验材料,第1次证明了DNA是遗传物质。

1953年,美国科学家沃森(J.D.Watson,1928——)和英国科学家克里克(F.Crick,1916-2004)共同提出了DNA分子双螺旋结构模型。

这是20世纪生物科学最伟大的成就,标志着生物科学的发展进入了一个新的阶段——分子生物学阶段。

1773年,意大利科学家斯帕兰札尼(L.Spallanzani,1729-1799),通过实验证明,胃液有化学性消化作用。

1836年,德国科学家施旺(T.Schwann,1810—1882),从胃液中提取出胃蛋白酶。

(第2次出现)

1926年,美国科学家萨姆纳(J.B.Sumner,1887—1955),从刀豆种子中提取出脲酶的结晶,并且通过化学实验证实脲酶是一种蛋白质。

20世纪80年代,美国科学家切赫(T.R.Cech,1947一)和奥特曼(S.Ahman,1939一)发现少数RNA也有生物催化作用。

1771年,英国科学家普里斯特利(J.Priestley,1733—18o4),通过实验发现植物可以更新空气。

1864年,德国科学家萨克斯(J.yonSachs,1832—1897),通过实验证明光合作用产生了淀粉。

1880年,美国科学家恩格尔曼(G.Engelmann,1809-184),通过实验证明叶绿体是植物进行光合作用的场所。

20世纪,30年代,美国科学家鲁宾(S.Ruben)和卡门(M.Kamen)用同位素标记法证明光合作用中释放的氧全部来自水。

1880年,达尔文(C.R.Darwin,1809—1882)通过实验推想,胚芽鞘的尖端可能会产生某种物质,这种物质在单侧光的照射下,对胚芽鞘下面的部分会产生某种影响。

(第2次出现)

1928年,荷兰科学家温特(F.W.Went,1903——),通过实验证明,胚芽鞘的尖端确实产生了某种物质,这种物质从尖端运输到下部,并且促使胚芽鞘下面的某些部分生长。

1934年,荷兰科学家郭葛(F.Ko)等人从植物中提取出吲哚乙酸——生长素。

1)DNA是主要的遗传物质

1928年,英国科学家格里菲思(F.Grifith,1877—1941),通过实验推想,已杀死的S型细菌中,含有某种“转化因子”,使R型细菌转化为S型细菌。

1944年,美国科学家艾弗里(O.Avery,1877—1955)和他的同事,通过实验证明上述“转化因子”为DNA,也就是说DNA才是遗传物质。

1952年,赫尔希(A.Hershey)和蔡斯(M.Chase),通过噬菌体侵染细菌的实验证明,在噬菌体中,亲代和子代之间具有连续性的物质是DNA,而不是蛋白质。

2)DNA分子的结构和复制

1953年,美国科学家沃森(J.D.Watson,1928一)和英国科学家克里克(F.Crick,1916-2004)共同提出了DNA分子双螺旋结构模型。

1962年,沃森、克里克和维尔金斯共同获得了诺贝尔生理学或医学奖。

(第2次出现)

基因的分离定律孟德尔(G.Mendel,1822-1884),奥国人,通过豌豆等植物的

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 自然科学 > 物理

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2