应用题分类.docx
《应用题分类.docx》由会员分享,可在线阅读,更多相关《应用题分类.docx(35页珍藏版)》请在冰点文库上搜索。
应用题分类
一元一次方程应用题
列方程解应用题,是初中数学的重要内容之一。
许多实际问题都归结为解一种方程或方程组,所以列出方程或方程组解应用题是数学联系实际,解决实际问题的一个重要方面;下面从以下几个方面分类对常见的数学问题加以阐述,希望对同学们有所帮助.
知识点
1、用列方程的方法解决实际问题的一般思路是分析数量关系,列出方程。
2、列方程的实质就是用两种不同的方法来表示同一个量,建立等式。
3、列方程解应用题的一般步骤是设未知数,列方程,解方程,求出方程的解。
4、实际问题中的数量关系比较隐蔽,关键是审题,弄清问题背景,分析清楚数量关系,特别是找出可以作为列方程依据的相等关系。
学习本专题注意事项:
1.认真读题(很重要)
2.找出有用的数据
3.找出等量关系(具体见下分析),列方程;
有时可能找到不止一个等量关系,用一个可以将所有数据都用到的等量关系列方程,其他的用已知数据表示上等量关系中的量,注意等量关系不能重复使用(如3.劳力调配问题例)
4.设未知量时设一个好列方程的量为x,若找不到,直接设所问的量为x
1.和、差、倍、分问题:
(1)倍数关系:
通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。
(2)多少关系:
通过关键词语“多、少、和、差、不足、剩余……”来体现。
例.根据2001年3月28日新华社公布的第五次人口普查统计数据,截止到2001年11月1日0时,全国每10万人中具有小学文化程度的人口为35701人,比1990年7月1日减少了3.66%,1990年6月底每10万人中约有多少人具有小学文化程度?
分析:
等量关系为:
两年的百分比之间的关系为:
90年的-3.66%=01年的
解:
设1990年6月底每10万人中约有x人具有小学文化程度
X÷100000-3.66%=35701÷100000
1.某校共有学生1049人,女生占男生的40%,求男生的人数。
2.两个村共有834人,甲村的人数比乙村的人数的一半还少111人,两村各有多少人?
3.两组工人,按计划本月应共生产680个零件,实际第一组超额20%、第二组超额15%完成了本月任务,因此比原计划多生产118个零件。
问本月原计划每组各生产多少个零件?
2.等积变形问题:
“等积变形”是以形状改变而体积或面积不变为前提。
常用等量关系为:
①形状面积变了,周长没变;
②原料体积=成品体积。
例.用直径为90mm的圆柱形玻璃杯(已装满水)向一个由底面积为
内高为81mm的长方体铁盒倒满水时,玻璃杯中的水的高度下降多少mm?
(结果保留整数
)
分析:
等量关系为:
圆柱形玻璃杯倒出的水体积=长方体铁盒的体积
解:
玻璃杯中的水的高度下降多少xmm
1.一个长方形的周长长为26cm,这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,设长方形的长为
cm,可列方程是
2.在一只底面直径为30厘米,高为8厘米的圆锥形容器中倒满水,然后将水倒入一只底面直径为10厘米的圆柱形空容器里,圆柱形容器中的水有多高?
3.将棱长为20cm的正方体铁块锻造成一个长为100cm,宽为5cm的长方体铁块,求长方体铁块的高度。
4.将棱长为20cm的正方体铁块没入盛水量筒中,已知量筒底面积为12cm2,问量筒中水面升高了多少cm?
5.如图所示,两个长方形重叠部分的面积相当于大长方形面积的六分之一,相当于小长方形面积的四分之一,阴影部分的面积为224cm2,求重叠部分面积。
3.劳力调配问题:
这类问题要搞清人数的变化,常见题型有:
(1)既有调入又有调出;
(2)只有调入没有调出,调入部分变化,其余不变;
(3)只有调出没有调入,调出部分变化,其余不变。
例.甲、乙两车间各有工人若干,如果从乙车间调100人到甲车间,那么甲车间的人数是乙车间剩余人数的6倍;如果从甲车间调100人到乙车间,这时两车间的人数相等,求原来甲乙车间的人数。
分析:
等量关系
(1)原来甲车间的人数+100=(原来乙车间的人数-100)×6
(2)原来甲车间的人数-100=原来乙车间的人数+100
解:
设求原来乙车间的x人,由等量关系
(2)得原来甲车间的人数=x+200,代入
(1)中得方程
x+200+100=(x-100)×6
1.某厂一车间有64人,二车间有56人。
现因工作需要,要求第一车间人数是第二车间人数的一半。
问需从第一车间调多少人到第二车间?
2.甲队人数是乙队人数的2倍,从甲队调12人到乙队后,甲队剩下来的人数是原乙队人数的一半还多15人。
求甲、乙两队原有人数各多少人?
4.比例分配问题:
这类问题的一般思路为:
设其中一份为x,利用已知的比,写出相应的代数式。
常用等量关系:
各部分之和=总量,比值相等
例.三个正整数的比为1:
2:
4,它们的和是84,那么这三个数中最大的数是几?
解;设最小的数为x,则中间数为2x,最大数字为4x
x+2x+4x=84
1.图纸上某零件的长度为32cm,它的实际长度是4cm,那么量得该图纸上另一个零件长度为12cm,求这个零件的实际长度。
2.一时期,日元与人民币的比价为25.2:
1,那么日元50万,可以兑换人民币多少元?
3.魏老师到市场去买菜,发现若把10千克的菜放到秤上,指针盘上的指针
转了180°.如图,第二天魏老师就给同学们出了两个问题:
(1)如果把0.5千克的菜放在秤上,指针转过多少角度?
(2)如果指针转了540,这些菜有多少千克?
4.地图上测量有一条路长度为10厘米,地图的比例显示为1:
10000,则这条路的实际长为?
5.数字问题
(1)要搞清楚数的表示方法:
一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9,0≤b≤9,0≤c≤9)则这个三位数表示为:
100a+10b+c。
(2)数字问题中一些表示:
两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示。
例.一个两位数,个位上的数是十位上的数的2倍,如果把十位与个位上的数对调,那么所得的两位数比原两位数大36,求原来的两位数
分析:
等量关系:
(1)现在的两位数-原来的两位数=36
(2)原来的两位数个位上的数=十位上的数×2
解:
原来的两位数十位上的数为x,则由
(2)得原来的两位数个位上的数为2x
现在的两位数=2x×10+x,所以由
(1)得方程
(2x×10+x)-(x×10+2x)=36
现在的两位数原来的两位数
1.有一个三位数,个位数字为百位数字的2倍,十位数字比百位数字大1,若将此数个位与百位顺序对调(个位变百位)所得的新数比原数的2倍少49,求原数。
2.一个五位数最高位上的数字是2,如果把这个数字移到个位数字的右边,那么所得的数比原来的数的3倍多489,求原数。
3.将连续的奇数1,3,5,7,9…,排成如下的数表:
(1)十字框中的五个数的平均数与15有什么关系?
(2)若将十字框上下左右平移,可框住另外的五个数,这五个数的和能等于315吗?
若能,请求出这五个数;若不能,请说明理由.
6.工程问题:
工程问题中的三个量及其关系为:
工作总量=工作效率×工作时间
经常在题目中未给出工作总量时,设工作总量为单位1,则工作效率=1/工作时间
例.一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?
分析:
设工程总量为单位1,等量关系为:
甲、乙合作3天后+乙单独完成剩下工程=1
解:
设乙还要x天才能完成全部工程
1.某工程由甲、乙两队完成,甲队单独完成需16天,乙队单独完成需12天。
如先由甲队做4天,然后两队合做,问再做几天后可完成工程的六分之五?
2.已知某水池有进水管与出水管一根,进水管工作15小时可以将空水池放满,出水管工作24小时可以将满池的水放完;
(1)如果单独打开进水管,每小时可以注入的水占水池的几分之几?
(2)如果单独打开出水管,每小时可以放出的水占水池的几分之几?
(3)如果将两管同时打开,每小时的效果如何?
如何列式?
(4)对于空的水池,如果进水管先打开2小时,再同时开两管,问注满水池还需要多少时间?
3.有一个水池,用两个水管注水。
如果单开甲管,2小时30分注满水池,如果单开
乙管,5小时注满水池。
①如果甲、乙两管先同时注水20分钟,然后由乙单独注水。
问还需要多少时间才能把
水池注满?
②假设在水池下面安装了排水管丙管,单开丙管3小时可以把一满池水放完。
如果三
管同时开放,多少小时才能把一空池注满水?
7.行程问题:
(1)行程问题中的三个基本量及其关系:
路程=速度×时间。
(2)基本类型有 ①相遇问题;②追及问题;
常见的还有:
相背而行;行船问题;环形跑道问题。
(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,一般情况下问题就能迎刃而解。
并且还常常借助画草图来分析,理解行程问题。
例.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
(1)慢车先开出1小时,快车再开。
两车相向而行。
问快车开出多少小时后两车相遇?
(2)两车同时开出,相背而行多少小时后两车相距600公里?
(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?
(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?
(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?
此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。
故可结合图形分析。
(1)分析:
相遇问题,画图表示为:
等量关系是:
慢车路程+快车路程=480,慢车时间=快车时间+1小时
解:
设快车开出t小时后两车相遇
140t+90(t+1)=480
(2)分析:
相背而行,画图表示为:
等量关系是:
慢车路程+快车路程+480=600,慢车时间=快车时间
解:
相背而行t小时后两车相距600公里
140t+90t+480=600
(3)分析:
追及问题,画图表示为
等量关系为:
快车路程+480公里-慢车路程=600公里,慢车时间=快车时间
解:
设x小时后两车相距600公里,
140t+480-90t=600
(4)分析:
追及问题,画图表示为:
等量关系为:
慢车路程+480公里=快车路程,慢车时间=快车时间
解:
设t小时后快车追上慢车
90t+480=140t
(5)分析:
追及问题画图表示为:
等量关系为:
快车的路程=慢车走的路程+480公里,慢车时间=快车时间+1
解:
快车开出后t小时追上慢车
140t=90(t+1)+480
1.从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲乙两地相距x千米,则列方程为________________。
2.甲、乙两人在相距18千米的两地同时出发,相向而行,1小时48分相遇,如果甲比乙早出发40分钟,那么在乙出发1小时30分时两人相遇,求甲、乙两人的速度。
3.某人从家里骑自行车到学校。
若每小时行15千米,可比预定的时间早到15分钟;若每小时行9千米,可比预定的时间晚到15分钟;求从家里到学校的路程有多少千米?
4.与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。
行人的速度是每小时3.6Km,骑自行车的人的速度是每小时10.8Km。
如果一列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车人的时间是26秒。
(1)火车的速度为每秒多少米;
(2)求这列火车的身长是多少米。
5.休息日我和妈妈从家里出发一同去外婆家,我们走了1小时后,爸爸发现带给外婆的礼品忘在家里,便立刻带上礼品以每小时6千米的速度去追,如果我和妈妈每小时行2千米,从家里到外婆家需要1小时45分钟,问爸爸能在我和妈妈到外婆家之前追上我们吗?
8.利润赢亏问题
(1)销售问题中常出现的量有:
进价、售价、标价、利润等
(2)有关关系式:
商品利润=商品售价—商品进价=商品标价×折扣率—商品进价
商品利润率=商品利润/商品进价
商品售价=商品标价×折扣率
例.一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?
分析:
探究题目中隐含的条件是关键,可直接设成本为x元
进价
折扣率
标价
优惠价
利润
x元
8折
(1+40%)x元
80%(1+40%)x
15元
等量关系:
利润=折扣后价格—进价,折扣后价格-进价=15
解:
设进价为x元,
80%(1+40%)x-x=15
1.某商场将进价为每件X元的上衣标价为m元,在此基础上再降价10%,顾客需付款270元。
已知进价x元是标价m元的60%,则x的值是()
2.如果某商品进价的降低5%,而售价不变,利润率可提高15个百分点,求此商品的原来的利润率
3.某商场出售某种文具,每件可盈利2元,为支援贫困山区的小朋友,按7折收给某山区学校,结果每件盈利0.20元。
问该文具的进价是每件多少元?
4.某商品进价1500元,提高40%后标价,若打折销售,使其利润率为20%,则此商品是按几折销售的?
5.某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?
6.某种商品的市场需求量D(千件)与单价p(元/件)服从需求关系:
.问:
(1)当单价为4元时,市场需求量是多少?
(2)若单价在4元基础上又涨价1元,则需求量发生了怎样的变化?
7.八一体育馆设计一个由相同的正方体搭成的标志物(如图所示),每个正方体的棱长为1米,其暴露在外面的面(不包括最底层的面)用五夹板钉制而成,然后刷漆。
每张五夹板可做两个面,每平方米用漆500克.
(1)建材商店将一张五夹板按成本价提高40%后标价,又以8折优惠卖出,结果每张仍获利4.8元(五夹板必须整张购买):
(2)油漆店开展“满100送20,多买多送的酬宾活动”,所购漆的售价为每千克34元.试问购买五夹板和油漆共需多少钱?
9.储蓄问题
(1)顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。
利息的20%付利息税
(2)利息=本金×年利率×期数本息和=本金+利息利息税=利息×税率(20%)
(3)年存储利息=本金×年利率×年数注意银行给利率都是年利率期数的单位为年
例.某同学把250元钱存入银行,整存整取,存期为半年。
半年后共得本息和252.7元,求银行半年期的年利率是多少?
(不计利息税)
分析:
等量关系:
本息和=本金+本金×利率×期数,半年的期数为1/2年
解:
设半年期的年利率为x,
250+250x×1/2=252.7
1.莉莉的叔叔将打工挣来的25000元钱存入银行,整存整取三年,年利率为3.24%,三年后本金和利息共有元(不计利息税)
2.本人三年前存了一份3000元的教育储蓄,今年到期时的本利和为3243元,请你帮我算一算这种储蓄的年利率。
若年利率为x%,则可列方程__________________________。
3.国家规定:
存款利息税=利息×20%,银行一年定期储蓄的年利率为1.98%.小明有一笔一年定期存款,如果到期后全取出,可取回1219元。
若设小明的这笔一年定期存款是x元,则下列方程中正确的是()
(
)
(
)
(
)
(
)
10.行船问题:
顺水航速=静水船速+水流速度,逆水航速=静水船速-水流速度。
例.一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?
分析:
等量关系:
顺水航行距离=逆水航行距离
解:
设船在静水中的速度为x千米每小时
2(x+3)=3(x-3)
1.一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行需要3小时,求两城市间距离。
11.年龄问题:
注意比对象的年龄也同时在增长
例:
甲比乙大15岁,5年前甲的年龄是乙的年龄的两倍,乙现在的年龄是?
分析:
等量关系:
(1)甲的年龄-乙的年龄=15,
(2)5年前甲的年龄=5年前乙的年龄×2
解:
设乙现在的年龄是x岁,由等量关系
(1)得甲的现在的年龄是x+15岁
再由等量关系
(2)得方程x+15-5=(x-5)×2
1.小华的爸爸现在的年龄比小华大25岁,8年后小华爸爸的年龄是小华的3倍多5岁,求小华现在的年龄
12.配套问题:
各件的总数比例和每一套中各件的比例相等
例:
机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?
分析:
等量关系:
大齿轮总数÷小齿轮总数=一套中的大齿轮数÷一套中的小齿轮数
加工大齿轮工人+加工小齿轮工人=85
解:
设x名工人加工大齿轮,则加工小齿轮的工人有85-x人
16x:
[10(85-x)]=2:
3
1.某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套(一个螺栓配两个螺母)?
2.包装厂有工人42人,每个工人平均每小时可以生产圆形铁片120片,或长方形铁片80片,将两张圆形铁片与和一张可配套成一个密封圆桶,问如何安排工人生产圆形或长方形铁片能合理地将铁片配套?
3.某部队派出一支有25人组织的小分队参加防汛抗洪斗争,若每人每小时可装泥土18袋或每2人每小时可抬泥土14袋,如何安排好人力,才能使装泥和抬泥密切配合,而正好清场干净。
4.某车间加工机轴和轴承,一个工人每天平均可加工15个机轴或10个轴承。
该车间共有80人,一根机轴和两个轴承配成一套,问应分配多少个工人加工机轴或轴承,才能使每天生产的机轴和轴承正好配套。
5.某厂生产一批西装,每2米布可以裁上衣3件,或裁裤子4条,现有花呢240米,为了使上衣和裤子配套,裁上衣和裤子应该各用花呢多少米?
13.增长率问题:
增长率=增长量÷原来的产量或增长量=原来的产量×增长率
例:
某印刷厂第三季度印刷了科技书籍50万册,而第四季度印刷了58万册,求季度的增长率是多少?
解:
设增长率为x
58-50=50X
1.某化肥厂去年生产化肥3200吨,今年计划生产3600吨,今年计划比去年增产%
2.某加工厂有出米率为70%的稻谷加工大米,现在加工大米100公斤,设要这种大米x公斤,则列出的正确的方程是。
。
3.甲、乙两厂去年完成任务的112%和110%,共生产机床4000台,比原来两厂任务之和超产400台,问甲厂原来的生产任务是多少台?
14.浓度问题:
1.浓度=物质的纯质量÷(物质的纯质量+水)
2.一定注意物质的纯质量的变化和总得溶液的质量的变化
例:
某化工厂现有浓度为15%的稀硫酸175千克,要把它配成浓度为25%的硫酸,需要加入浓度为50%的硫酸多少千克?
分析:
等量关系:
15%的稀硫酸中的纯硫酸+50%的硫酸中的纯硫酸=25%的硫酸中的纯硫酸
175×15%+50%x=25%(x+175)
配成浓度为25%的硫酸的总质量
1.有含盐20%的盐水5千克,要配制成含盐8%的盐水,需加水______________千克。
2.今需将浓度为80%和15%的两种农药配制成浓度为20%的农药4千克,问两种农药应各取多少千克?
3.甲、乙两块合金,含银和铜的比分别是甲为4:
3,乙为7:
9,今从两块合金中各取多少千克,能得到含银84千克、含铜82千克的新合金?
4.有甲、乙两种铜和银的合金,甲种合金含银25%,乙种合金含银37.5%,现在要熔制含银30%的合金100千克,两种合金应各取多少?
15古典数学:
例:
有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只?
分析:
鸡和兔各一个头,所以等量关系
(1)鸡+兔=88,
鸡两只脚,兔有4只脚,所以等量关系
(2)鸡脚+兔脚=244
解:
设鸡有x只,则兔有88-x只
2x+4(88-x)=244
1.100个和尚100个馍,大和尚每人吃两个,小和尚两人吃一个,问有多少大和尚,多少小和尚。
16方案设计与成本分析:
1.我省某地生产的一种绿色蔬菜,在市场上若直接销售,每吨利润为1000元,经粗加工后销售,每吨利润可达4500元,经精加工后销售每吨获利7500元。
当地一家农工商企业收购这种蔬菜140吨,该企业加工厂的生产能力是:
如果对蔬菜进行粗加工,每天可以加工16吨,如果进行细加工,每天可以加工6吨,但两种加工方式不能同时进行。
受季节条件限制,企业必须在15天的时间将这批蔬菜全部销售或加工完毕,企业研制了三种可行方案。
方案一:
将蔬菜全部进行粗加工;
方案二:
尽可能多的对蔬菜进行精加工,来不及进行加工的蔬菜,在市场上直接销售;
方案三:
将一部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好用15天。
你认为哪种方案获利最多?
为什么
2.牛奶加工厂现有鲜奶8吨,若在市场上直接销售鲜奶(每天可销售8吨),每吨可获利润500元;制成酸奶销售,每加工1吨鲜奶可获利润1200元;制成奶片销售,每加工1吨鲜奶可获利润2000元.该厂的生产能力是:
若制酸奶,每天可加工3吨鲜奶;若制奶片,每天可加工1吨鲜奶;受人员和设备限制,两种加工方式不可同时进行,受气温条件限制,这批牛奶必须在4天内全部销售或加工完毕.
请你帮牛奶加工厂设计一种方案,使这8吨鲜奶既能在4天内全部销售或加工完毕,又能获得你认为最多的利润.
3.某市剧院举办大型文艺演出,其门票价格为:
一等席300元/人,二等席200元/人,三等席150元/人,某公司组织员工36人去观看,计划用5850元购买2种门票,请你帮助公司设计可能的购票方案。
4.小明家搬了新居要购买新冰箱,小明和妈妈在商场看中了甲、乙两种冰箱.其中,甲冰箱的价格为2100元,日耗电量为1度;乙冰箱是节能型新产品,价格为2220元,日耗电量为0.5度,并且两种冰箱的效果是相同的.老板说甲冰箱可以打折,但是乙冰箱不能打折,请你就价格方面计算说明,甲冰箱至少打几折时购买甲冰箱比较合算?
(每度电0.5元,两种冰箱的使用寿命均为10年,平均每年使用300天)
17.设辅助未知数:
1.某音乐厅五月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票,其中团体票占总票数的
若提前购票,则给予不同程度的优惠.在五月份内,团体票每张12元,共售出团体票的
零售票每张16元,共售出零售票的一半,如果在六月份内,团体票按16元出售,并计划在六月份内售出全部余票,那么零售票应按每张多少元定价才能使这两个月的票款收入持平?
2.现对某商品降价10%促销,为了使销售总金额不变,销售量要比按原价销售时增加百分之几?
18.比赛积分问题:
1.某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:
每道题的答案选对得3分,不选得0分,选错倒扣1分。
已知某人有5道题未作,得了103分,则这个人选错了几道题。
2.某学校七年