Optimization based automated curation of metabolic reconstructions.docx

上传人:b****3 文档编号:6248921 上传时间:2023-05-09 格式:DOCX 页数:24 大小:102.02KB
下载 相关 举报
Optimization based automated curation of metabolic reconstructions.docx_第1页
第1页 / 共24页
Optimization based automated curation of metabolic reconstructions.docx_第2页
第2页 / 共24页
Optimization based automated curation of metabolic reconstructions.docx_第3页
第3页 / 共24页
Optimization based automated curation of metabolic reconstructions.docx_第4页
第4页 / 共24页
Optimization based automated curation of metabolic reconstructions.docx_第5页
第5页 / 共24页
Optimization based automated curation of metabolic reconstructions.docx_第6页
第6页 / 共24页
Optimization based automated curation of metabolic reconstructions.docx_第7页
第7页 / 共24页
Optimization based automated curation of metabolic reconstructions.docx_第8页
第8页 / 共24页
Optimization based automated curation of metabolic reconstructions.docx_第9页
第9页 / 共24页
Optimization based automated curation of metabolic reconstructions.docx_第10页
第10页 / 共24页
Optimization based automated curation of metabolic reconstructions.docx_第11页
第11页 / 共24页
Optimization based automated curation of metabolic reconstructions.docx_第12页
第12页 / 共24页
Optimization based automated curation of metabolic reconstructions.docx_第13页
第13页 / 共24页
Optimization based automated curation of metabolic reconstructions.docx_第14页
第14页 / 共24页
Optimization based automated curation of metabolic reconstructions.docx_第15页
第15页 / 共24页
Optimization based automated curation of metabolic reconstructions.docx_第16页
第16页 / 共24页
Optimization based automated curation of metabolic reconstructions.docx_第17页
第17页 / 共24页
Optimization based automated curation of metabolic reconstructions.docx_第18页
第18页 / 共24页
Optimization based automated curation of metabolic reconstructions.docx_第19页
第19页 / 共24页
Optimization based automated curation of metabolic reconstructions.docx_第20页
第20页 / 共24页
亲,该文档总共24页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

Optimization based automated curation of metabolic reconstructions.docx

《Optimization based automated curation of metabolic reconstructions.docx》由会员分享,可在线阅读,更多相关《Optimization based automated curation of metabolic reconstructions.docx(24页珍藏版)》请在冰点文库上搜索。

Optimization based automated curation of metabolic reconstructions.docx

Optimizationbasedautomatedcurationofmetabolicreconstructions

Optimizationbasedautomatedcurationofmetabolicreconstructions

VinaySatishKumar,1MadhukarSDasika,2andCostasDMaranas

2

1DepartmentofIndustrialandManufacturingEngineering,ThePennsylvaniaStateUniversity,UniversityPark,PA16802,USA

2DepartmentofChemicalEngineering,ThePennsylvaniaStateUniversity,UniversityPark,PA16802,USA

Correspondingauthor.

VinaySatishKumar:

vsk111@psu.edu;MadhukarSDasika:

msd179@psu.edu;CostasDMaranas:

costas@psu.edu

ReceivedDecember14,2006;AcceptedJune20,2007.

ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(http:

//creativecommons.org/licenses/by/2.0),whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited.

Top 

Abstract 

Background 

Results 

Discussionandconclusion 

Methods 

Authors'contributions 

SupplementaryMaterial 

References 

Abstract

Background

Currently,thereexiststensofdifferentmicrobialandeukaryoticmetabolicreconstructions(e.g.,Escherichiacoli,Saccharomycescerevisiae,Bacillussubtilis)withmanymoreunderdevelopment.Allofthesereconstructionsareinherentlyincompletewithsomefunctionalitiesmissingduetothelackofexperimentaland/orhomologyinformation.Akeychallengeintheautomatedgenerationofgenome-scalereconstructionsistheelucidationofthesegapsandthesubsequentgenerationofhypothesestobridgethem.

Results

Inthiswork,anoptimizationbasedprocedureisproposedtoidentifyandeliminatenetworkgapsinthesereconstructions.Firstweidentifythemetabolitesinthemetabolicnetworkreconstructionwhichcannotbeproducedunderanyuptakeconditionsandsubsequentlyweidentifythereactionsfromacustomizedmulti-organismdatabasethatrestorestheconnectivityofthesemetabolitestotheparentnetworkusingfourmechanisms.Thisconnectivityrestorationishypothesizedtotakeplacethroughfourmechanisms:

a)reversingthedirectionalityofoneormorereactionsintheexistingmodel,b)addingreactionfromanotherorganismtoprovidefunctionalityabsentintheexistingmodel,c)addingexternaltransportmechanismstoallowforimportationofmetabolitesintheexistingmodelandd)restoreflowbyaddingintracellulartransportreactionsinmulti-compartmentmodels.Wedemonstratethisprocedureforthegenome-scalereconstructionofEscherichiacoliandalsoSaccharomycescerevisiaewhereincompartmentalizationofintra-cellularreactionsresultsinamorecomplextopologyofthemetabolicnetwork.Wedeterminethatabout10%ofmetabolitesinE.coliand30%ofmetabolitesinS.cerevisiaecannotcarryanyflux.Interestingly,thedominantflowrestorationmechanismisdirectionalityreversalsofexistingreactionsintherespectivemodels.

Conclusion

Wehaveproposedsystematicmethodstoidentifyandfillgapsingenome-scalemetabolicreconstructions.Theidentifiedgapscanbefilledbothbymakingmodificationsintheexistingmodelandbyaddingmissingreactionsbyreconcilingmulti-organismdatabasesofreactionswithexistinggenome-scalemodels.Computationalresultsprovidealistofhypothesestobequeriedfurtherandtestedexperimentally.

Top 

Abstract 

Background 

Results 

Discussionandconclusion 

Methods 

Authors'contributions 

SupplementaryMaterial 

References 

Background

Thegenomeofseveralmicroorganismshasbeencompletelysequencedandannotatedinthepastdecade[1-4].Thisinformationhasaidedthemetabolicreconstructionsofseveralmicrobialandeukaryoticorganismsusingexperimentalevidenceandbioinformaticsbasedtechniquesprovidingsinglecompartment(e.g.,Escherichiacoli[5])andmulti-compartmentmodels(e.g.,Saccharomycescerevisiae[6]).Allofthesereconstructionsareinherentlyincompletewithsomefunctionalitiesmissingduetothelackofexperimentaland/orhomologyinformation.Thesemissingreactionstepsmayleadtothepredictionoferroneousgeneticinterventionsforatargetedoverproductionortheelucidationofmisleadingorganizationalprinciplesandpropertiesofthemetabolicnetwork.Akeychallengeintheautomatedgenerationofgenome-scalereconstructionsistheelucidationofthesegapsandthesubsequentgenerationofhypothesestobridgethem.Thischallengehasalreadybeenrecognizedandanumberofcomputationalapproacheshavebeenunderdevelopmenttoresolvethesediscrepancies[7-11].

Mostoftheaforementionedeffortsarebasedontheuseofsequencehomologytouncovermissinggenes.Specifically,sequencehomologyisusedtopinpointgenesinrelatedspeciesthathavesignificantsimilaritywithanunassignedORFofthecuratedmicroorganism[12].GreenetalformalizedandfurtherextendedthisconceptbyintroducingamethodthatidentifiedmissingenzymesinametabolicnetworkusingsequencehomologyrelatedmetricswithinaBayesianframework[11].Alternatively,non-homologybasedreconstructionshavebeenimplementedbyidentifyingcandidategenesbymeasuringthesimilaritywithmetricssuchasmRNAcoexpressiondata[8]andphylogeneticprofiles[10]whilealsotakingintoaccountthelocalstructureoftheexistingpartiallyreconstructedmetabolicnetworks.Arecentadvancementinthisdirectionusesmultipletypesofassociationevidenceincludingclusteringofgenesonthechromosomeandproteinfusioneventsinadditiontophylogeneticprofiles[9].Allmethodsdescribedabovepostulateasetofcandidategenesandthenevaluatethelikelihoodthatanyofthesecandidategenesispresentinthemicroorganism'smetabolicnetworkofinterestusingavarietyofscoringmetrics.Inadditiontotheseapproaches,variousgenomiccontextanalyseshavealsobeenusedtoidentifymissingmetabolicgenes[7,13-16].Specifically,arecentstudyexploitstheavailabilityofhighlycuratedmetabolicnetworkstohypothesizegenereactioninteractionsinlesscharacterizedorganisms[16].Theseaforementionedmethodspredictmissingenzymesinthemetabolicnetworkbyconductingsequencebasedcomparisonsofentiregenomesandinferringpossiblemetabolicfunctionsacrossdifferentmicroorganisms.

Alternatively,arecentsystemsbasedcomputationalapproachidentifiesthelocationofmissingmetabolicfunctionsintheE.coliiJR904modelbypinpointingdiscrepanciesbetweeninsilicomodelpredictionsandknowninvivogrowthphenotypes[17].Subsequently,anoptimizationbasedalgorithmisusedtoresolvethesediscrepanciesbysearchingformissingmetabolicfunctionsfromacandidatedatabaseofreactions.Inthispaperinstead,wepinpointmetabolitesthatcannotcarryanyfluxthroughthemandsubsequentlygeneratehypothesestorestoreconnectivity.Tothisend,weintroduceanoptimizationbasedprocedure(GapFind)tofirstidentifysuchgapsinbothsingleandmulti-compartmentmetabolicnetworksandsubsequentlyusinganoptimizationbasedprocedure(GapFill)restoretheirconnectivityusingseparatepathologyresolvinghypotheses.Incontrasttothepreviousmethodswhichfillgapsonlybyidentifyingmissingenzymes[8-11,17]oraddingtransportreactions[17],wealsoexplorewhetherthesegapscanbefilledbymakingintramodelmodifications.Figure1pictoriallyillustrateshowsuchgapsariseinmetabolicreconstructionsandintroducesthedefinitionsproposedinthispapertopreciselydescribethesepathologies.

Figure1

Characterizationofproblemmetabolitesinmetabolicnetworks.MetaboliteAisdefinedasarootno-productionmetabolitebecausethereisno-productionortransportmechanismforitinthenetwork.MetaboliteCisadownstreamno-productionmetabolite(more...)

Gapsinmetabolicreconstructionsaremanifestedas(i)metaboliteswhichcannotbeproducedbyanyofthereactionsorimportedthroughanyoftheavailableuptakepathwaysinthemodel;or(ii)metabolitesthatarenotconsumedbyanyofthereactionsinthenetworkorexportedbasedonanyexistingsecretionpathways.Werefertothesemetabolitesasrootno-production(e.g.,metaboliteA)androotno-consumptionmetabolites(e.g.,metaboliteB)respectively.Atsteady-stateconditionsnoflowcanpassthroughthemduetotheincompleteconnectivitywiththerestofthenetwork.Clearly,suchpathologiesarenotphysiologicallyrelevantandthusmustbecausedbyomissionand/orerrorsinthemodelreconstructionprocess.Notably,thelackofflowinrootno-productionmetabolitesandrootno-consumptionmetabolitesispropagateddownstream/upstreamrespectivelygivingrisetoadditionalmetabolitesthatcannotcarryanyflow.Werefertothesemetabolitesthatareindirectlypreventedfromcarryingflowasdownstreamno-production(e.g.,metaboliteC)metabolitesandupstreamno-consumptionmetabolites(e.g.,metaboliteD)respectively.Itisimportanttonotethatbyrestoringconnectivityfortherootproblemmetabolitesallupstream/downstreammetabolitesarealsoautomaticallyfixed.Weconcentrateonresolvingonlyno-productionmetabolitesinthecaseofcytosolicmetabolites.Inthecaseofnon-cytosolic(i.e.,presentininternalcompartments)metabolites,weidentifymechanismstoresolvebothno-productionandno-consumptionmetabolites.

Forsinglecompartmentmetabolicnetworks(wherewehaveonlycytosolicmetabolites),wepostulatethreeseparatemechanismsforfixingno-productionmetabolites(seealsoFigure2).Weexplorewhether(i)reversingthedirectionalityofexistingreactionsinthemodel(Mechanism1),(ii)addingnewreactionsfromamulti-speciesdatabase(e.g.,MetaCyc[18])(Mechanism2)orfinally(iii)allowingforthedirectimportationoftheproblemmetaboliterestoresflowintotheno-productionmetabo

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 小学教育 > 语文

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2