电子元件故障检测剂使用方法电子元件检测方法Word文件下载.docx

上传人:b****4 文档编号:6348183 上传时间:2023-05-06 格式:DOCX 页数:23 大小:30.97KB
下载 相关 举报
电子元件故障检测剂使用方法电子元件检测方法Word文件下载.docx_第1页
第1页 / 共23页
电子元件故障检测剂使用方法电子元件检测方法Word文件下载.docx_第2页
第2页 / 共23页
电子元件故障检测剂使用方法电子元件检测方法Word文件下载.docx_第3页
第3页 / 共23页
电子元件故障检测剂使用方法电子元件检测方法Word文件下载.docx_第4页
第4页 / 共23页
电子元件故障检测剂使用方法电子元件检测方法Word文件下载.docx_第5页
第5页 / 共23页
电子元件故障检测剂使用方法电子元件检测方法Word文件下载.docx_第6页
第6页 / 共23页
电子元件故障检测剂使用方法电子元件检测方法Word文件下载.docx_第7页
第7页 / 共23页
电子元件故障检测剂使用方法电子元件检测方法Word文件下载.docx_第8页
第8页 / 共23页
电子元件故障检测剂使用方法电子元件检测方法Word文件下载.docx_第9页
第9页 / 共23页
电子元件故障检测剂使用方法电子元件检测方法Word文件下载.docx_第10页
第10页 / 共23页
电子元件故障检测剂使用方法电子元件检测方法Word文件下载.docx_第11页
第11页 / 共23页
电子元件故障检测剂使用方法电子元件检测方法Word文件下载.docx_第12页
第12页 / 共23页
电子元件故障检测剂使用方法电子元件检测方法Word文件下载.docx_第13页
第13页 / 共23页
电子元件故障检测剂使用方法电子元件检测方法Word文件下载.docx_第14页
第14页 / 共23页
电子元件故障检测剂使用方法电子元件检测方法Word文件下载.docx_第15页
第15页 / 共23页
电子元件故障检测剂使用方法电子元件检测方法Word文件下载.docx_第16页
第16页 / 共23页
电子元件故障检测剂使用方法电子元件检测方法Word文件下载.docx_第17页
第17页 / 共23页
电子元件故障检测剂使用方法电子元件检测方法Word文件下载.docx_第18页
第18页 / 共23页
电子元件故障检测剂使用方法电子元件检测方法Word文件下载.docx_第19页
第19页 / 共23页
电子元件故障检测剂使用方法电子元件检测方法Word文件下载.docx_第20页
第20页 / 共23页
亲,该文档总共23页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

电子元件故障检测剂使用方法电子元件检测方法Word文件下载.docx

《电子元件故障检测剂使用方法电子元件检测方法Word文件下载.docx》由会员分享,可在线阅读,更多相关《电子元件故障检测剂使用方法电子元件检测方法Word文件下载.docx(23页珍藏版)》请在冰点文库上搜索。

电子元件故障检测剂使用方法电子元件检测方法Word文件下载.docx

检测电位器的活动臂与电阻片的接触是否良好。

用万用表的欧姆档测“1”、“2”(或“2”、“3”)两端,将电位器的转轴按逆时针方向旋至接近“关”的位置,这时电阻值越小越好。

再顺时针慢慢旋转轴柄,电阻值应逐渐增大,表头中的指针应平稳移动。

当轴柄旋至极端位置“3”时,阻值应接近电位器的标称

值。

如万用表的指针在电位器的轴柄转动过程中有跳动现象,说明活动触点有接触不良的故障。

5?

正温度系数热敏电阻(PTC)的检测。

检测时,用万用表R×

1挡,具体可分两步操作:

常温检测(室内温度接近25℃);

将两表笔接触PTC热敏电阻的两引脚测出其实际阻值,并与标称阻值相对比,二者相差在±

2Ω内即为正常。

实际阻值若与标称阻值相差过大,则说明其性能不良或已损坏。

加温检测;

在常温测试正常的基础上,即可进行第二步测试—加温检测,将一热源(例如电烙铁)靠近PTC热敏电阻对其加热,同时用万用表监测其电阻值是否随温度的升高而增大,如是,说明热敏电阻正常,若阻值无变化,说明其性能变劣,不能继续使用。

注意不要使热源与PTC热敏电阻靠得过近或直接接触热敏电阻,以防止将其烫坏。

6?

负温度系数热敏电阻(NTC)的检测。

(1)、测量标称电阻值Rt用万用表测量NTC热敏电阻的方法与测量普通固定电阻的方法相同,即根据NTC热敏电阻的标称阻值选择合适的电阻挡可直接测出Rt的实际值。

但因NTC热敏电阻对温度很敏感,故测试时应注意以下几点:

Rt是生产厂家在环境温度为25℃时所测得的,所以用万用表测量Rt时,亦应在环境温度接近25℃时进行,以保证测试的可信度。

测量功率不得超过规定值,以免电流热效应引起测量误差。

C?

注意正确操作。

测试时,不要用手捏住热敏电阻体,以防止人体温度对测试产生影响。

(2)、估测温度系数αt先在室温t1下测得电阻值Rt1,再用电烙铁作热源,靠近热敏电阻Rt,测出电阻值RT2,同时用温度计测出此时热敏电阻RT表面的平均温度t2再进行计算。

7?

压敏电阻的检测。

用万用表的R×

1k挡测量压敏电阻两引脚之间的正、反向绝缘电阻,均为无穷大,否则,说明漏电流大。

若所测电阻很小,说明压敏电阻已损坏,不能使用。

8?

光敏电阻的检测。

用一黑纸片将光敏电阻的透光窗口遮住,此时万用表的指针基本保持不动,阻

值接近无穷大。

此值越大说明光敏电阻性能越好。

若此值很小或接近为零,说明光敏电阻已烧穿损坏,不能再继续使用。

将一光源对准光敏电阻的透光窗口,此时万用表的指针应有较大幅度的摆动,阻值明显减些,此值越小说明光敏电阻性能越好。

若此值很大甚至无穷大,表明光敏电阻内部开路损坏,也不能再继续使用。

将光敏电阻透光窗口对准入射光线,用小黑纸片在光敏电阻的遮光窗上部晃动,使其间断受光,此时万用表指针应随黑纸片的晃动而左右摆动。

如果万用表指针始终停在某一位置不随纸片晃动而摆动,说明光敏电阻的光敏材料已经损坏。

二、电容器的检测方法与经验

固定电容器的检测

检测10pF以下的小电容因10pF以下的固定电容器容量太小,用万用表进行测量,只能定性的检查其是否有漏电,内部短路或击穿现象。

测量时,可选用万用表R×

10k挡,用两表笔分别任意接电容的两个引脚,阻值应为无穷大。

若测出阻值(指针向右摆动)为零,则说明电容漏电损坏或内部击穿。

检测10PF~0?

01μF固定电容器是否有充电现象,进而判断其好坏。

万用表选用R×

1k挡。

两只三极管的β值均为100以上,且穿透电流要小。

可选用3DG6等型号硅三极管组成复合管。

万用表的红和黑表笔分别与复合管的发射极e和集电极c相接。

由于复合三极管的放大作用,把被测电容的充放电过程予以放大,使万用表指针摆幅度加大,从而便于观察。

应注意的是:

在测试操作时,特别是在测较小容量的电容时,要反复调换被测电容引脚接触A、B两点,才能明显地看到万用表指针的摆动。

对于0?

01μF以上的固定电容,可用万用表的R×

10k挡直接测试电容器有无充电过程以及有无内部短路或漏电,并可根据指针向右摆动的幅度大小估计出电容器的容量。

电解电容器的检测

因为电解电容的容量较一般固定电容大得多,所以,测量时,应针对不同容量选用合适的量程。

根据经验,一般情况下,1~47μF间的电容,可用R×

1k挡测量,大于47μF的电容可用R×

100挡测量。

将万用表红表笔接负极,黑表笔接正极,在刚接触的瞬间,万用表指

针即向右偏转较大偏度(对于同一电阻挡,容量越大,摆幅越大),接着逐渐向左回转,直到停在某一位置。

此时的阻值便是电解电容的正向漏电阻,此值略大于反向漏电阻。

实际使用经验表明,电解电容的漏电阻一般应在几百kΩ以上,否则,将不能正常工作。

在测试中,若正向、反向均无充电的现象,即表针不动,则说明容量消失或内部断路;

如果所测阻值很小或为零,说明电容漏电大或已击穿损坏,不能再使用。

对于正、负极标志不明的电解电容器,可利用上述测量漏电阻的方法加以判别。

即先任意测一下漏电阻,记住其大小,然后交换表笔再测出一个阻值。

两次测量中阻值大的那一次便是正向接法,即黑表笔接的是正极,红表笔接的是负极。

D?

使用万用表电阻挡,采用给电解电容进行正、反向充电的方法,根据指针向右摆动幅度的大小,可估测出电解电容的容量。

3?

可变电容器的检测

用手轻轻旋动转轴,应感觉十分平滑,不应感觉有时松时紧甚至有卡滞现象。

将载轴向前、后、上、下、左、右等各个方向推动时,转轴不应有松动的现象。

用一只手旋动转轴,另一只手轻摸动片组的外缘,不应感觉有任何松脱现象。

转轴与动片之间接触不良的可变电容器,是不能再继续使用的。

将万用表置于R×

10k挡,一只手将两个表笔分别接可变电容器的动片和定片的引出端,另一只手将转轴缓缓旋动几个来回,万用表指针都应在无穷大位置不动。

在旋动转轴的过程中,如果指针有时指向零,说明动片和定片之间存在短路点;

如果碰到某一角度,万用表读数不为无穷大而是出现一定阻值,说明可变电容器动片与定片之间存在漏电现象。

三、电感器、变压器检测方法与经验

色码电感器的的检测将万用表置于R×

1挡,红、黑表笔各接色码电感器的任一引出端,此时指针应向右摆动。

根据测出的电阻值大小,可具体分下述三种情况进行鉴别:

被测色码电感器电阻值为零,其内部有短路性故障。

被测色码电感器直流电阻值的大小与绕制电感器线圈所用的漆包线径、

绕制圈数有直接关系,只要能测出电阻值,则可认为被测色码电感器是正常的。

中周变压器的检测

将万用表拨至R×

1挡,按照中周变压器的各绕组引脚排列规律,逐一检查各绕组的通断情况,进而判断其是否正常。

检测绝缘性能将万用表置于R×

10k挡,做如下几种状态测试:

(1)初级绕组与次级绕组之间的电阻值;

(2)初级绕组与外壳之间的电阻值;

(3)次级绕组与外壳之间的电阻值。

上述测试结果分出现三种情况:

(1)阻值为无穷大:

正常;

(2)阻值为零:

有短路性故障;

(3)阻值小于无穷大,但大于零:

有漏电性故障。

电源变压器的检测

通过观察变压器的外貌来检查其是否有明显异常现象。

如线圈引线是否断裂,脱焊,绝缘材料是否有烧焦痕迹,铁心紧固螺杆是否有松动,硅钢片有无锈蚀,绕组线圈是否有外露等。

绝缘性测试。

用万用表R×

10k挡分别测量铁心与初级,初级与各次级、铁心与各次级、静电屏蔽层与衩次级、次级各绕组间的电阻值,万用表指针均应指在无穷大位置不动。

否则,说明变压器绝缘性能不良。

线圈通断的检测。

1挡,测试中,若某个绕组的电阻值为无穷大,则说明此绕组有断路性故障。

判别初、次级线圈。

电源变压器初级引脚和次级引脚一般都是分别从两侧引出的,并且初级绕组多标有220V字样,次级绕组则标出额定电压值,如15V、24V、35V等。

再根据这些标记进行识别。

E?

空载电流的检测。

(a)?

直接测量法。

将次级所有绕组全部开路,把万用表置于交流电流挡(500mA,串入初级绕组。

当初级绕组的插头插入220V交流市电时,万用表所指示的便是空载电流值。

此值不应大于变压器满载电流的10%~20%。

一般常见电子设备电源变压器的正常空载电流应在100mA左右。

如果超出太多,则说明变

压器有短路性故障。

(b)?

间接测量法。

在变压器的初级绕组中串联一个10?

/5W的电阻,次级仍全部空载。

把万用表拨至交流电压挡。

加电后,用两表笔测出电阻R两端的电压降U,然后用欧姆定律算出空载电流I空,即I空=U/R。

F?

空载电压的检测。

将电源变压器的初级接220V市电,用万用表交流电压接依次测出各绕组的空载电压值(U21、U22、U23、U24)应符合要求值,允许误差范围一般为:

高压绕组≤±

10%,低压绕组≤±

5%,带中心抽头的两组对称绕组的电压差应≤±

2%。

G?

一般小功率电源变压器允许温升为40℃~50℃,如果所用绝缘材料质量较好,允许温升还可提高。

H?

检测判别各绕组的同名端。

在使用电源变压器时,有时为了得到所需的次级电压,可将两个或多个次级绕组串联起来使用。

采用串联法使用电源变压器时,参加串联的各绕组的同名端必须正确连接,不能搞错。

否则,变压器不能正常工作。

I.电源变压器短路性故障的综合检测判别。

电源变压器发生短路性故障后的主要症状是发热严重和次级绕组输出电压失常。

通常,线圈内部匝间短路点越多,短路电流就越大,而变压器发热就越严重。

检测判断电源变压器是否有短路性故障的简单方法是测量空载电流(测试方法前面已经介绍)。

存在短路故障的变压器,其空载电流值将远大于满载电流的10%。

当短路严重时,变压器在空载加电后几十秒钟之内便会迅速发热,用手触摸铁心会有烫手的感觉。

此时不用测量空载电流便可断定变压器有短路点存在。

晶体管的检测方法

一、二极管的检测方法

1、检测小功率晶体二极管

A、判别正、负电极

(a)、观察外壳上的的符号标记。

通常在二极管的外壳上标有二极管的符号,带有三角形箭头的一端为正极,另一端是负极。

(b)、观察外壳上的色点。

在点接触二极管的外壳上,通常标有极性色点(白色或红色)。

一般标有色点的一端即为正极。

还有的二极管上标有色环,带色环的一端则为负极。

(c)、以阻值较小的一次测量为准,黑表笔所接的一端为正极,红表笔所接的一

端则为负极。

B、检测最高工作频率fM。

晶体二极管工作频率,除了可从有关特性表中查阅出外,实用中常常用眼睛观察二极管内部的触丝来加以区分,如点接触型二极管属于高频管,面接触型二极管多为低频管。

另外,也可以用万用表R×

1k挡进行测试,一般正向电阻小于1k的多为高频管。

C、检测最高反向击穿电压VRM。

对于交流电来说,因为不断变化,因此最高反向工作电压也就是二极管承受的交流峰值电压。

需要指出的是,最高反向工作电压并不是二极管的击穿电压。

一般情况下,二极管的击穿电压要比最高反向工作电压高得多(约高一倍)。

2、检测玻封硅高速开关二极管

检测硅高速开关二极管的方法与检测普通二极管的方法相同。

不同的是,这种管子的正向电阻较大。

用R×

1k电阻挡测量,一般正向电阻值为5k~10k,反向电阻值为无穷大。

3、检测快恢复、超快恢复二极管

用万用表检测快恢复、超快恢复二极管的方法基本与检测塑封硅整流二极管的方法相同。

即先用R×

1k挡检测一下其单向导电性,一般正向电阻为4.5k左右,反向电阻为无穷大;

再用R×

1挡复测一次,一般正向电阻为几欧,反向电阻仍为无穷大。

4、检测双向触发二极管

A、将万用表置于R×

1k挡,测双向触发二极管的正、反向电阻值都应为无穷大。

若交换表笔进行测量,万用表指针向右摆动,说明被测管有漏电性故障。

将万用表置于相应的直流电压挡。

测试电压由兆欧表提供。

测试时,摇动兆欧表,万用表所指示的电压值即为被测管子的VBO值。

然后调换被测管子的两个引脚,用同样的方法测出VBR值。

最后将VBO与VBR进行比较,两者的绝对值之差越小,说明被测双向触发二极管的对称性越好。

5、瞬态电压抑制二极管(TVS)的检测

1k挡测量管子的好坏,对于单极型的TVS,按照测量普通二极管的方法,可测出其正、反向电阻,一般正向电阻为4kΩ左右,反向电阻为无穷大。

对于双向极型的TVS,任意调换红、黑表笔测量其两引脚间的电阻值均应为无穷大,否则,说明管子性能不良或已经损坏。

6、高频变阻二极管的检测

A、识别正、负极

高频变阻二极管与普通二极管在外观上的区别是其色标颜色不同,普通二极管的色标颜色一般为黑色,而高频变阻二极管的色标颜色则为浅色。

其极性规律与普通二极管相似,即带绿色环的一端为负极,不带绿色环的一端为正极。

B、测量正、反向电阻来判断其好坏

具体方法与测量普通二极管正、反向电阻的方法相同,当使用500型万用表R×

1k挡测量时,正常的高频变阻二极管的正向电阻为5k~5.5k,反向电阻为无穷大。

7、变容二极管的检测

10k挡,无论红、黑表笔怎样对调测量,变容二极管的两引脚间的电阻值均应为无穷大。

如果在测量中,发现万用表指针向右有轻微摆动或阻值为零,说明被测变容二极管有漏电故障或已经击穿损坏。

对于变容二极管容量消失或内部的开路性故障,用万用表是无法检测判别的。

必要时,可用替换法进行检查判断。

正、负极的判别有的变容二极管的一端涂有黑色标记,这一端即是负极,而另一端为正极。

还有的变容二极管的管壳两端分别涂有黄色环和红色环,红色环的一端为正极,黄色环的一端为负极。

8、单色发光二极管的检测

在万用表外部附接一节1.5V干电池,将万用表置R×

10或R×

100挡。

这种接法就相当于给万用表串接上了1.5V电压,使检测电压增加至3V(发光二极管的开启电压为2V)。

检测时,用万用表两表笔轮换接触发光二极管的两管脚。

若管子性能良好,必定有一次能正常发光,此时,黑表笔所接的为正极,红表笔所接的为负极。

9、红外发光二极管的检测

A、判别红外发光二极管的正、负电极。

红外发光二极管有两个引脚,通常长引脚为正极,短引脚为负极。

因红外发光二极管呈透明状,所以管壳内的电极清晰可见,内部电极较宽较大的一个为负极,而较窄且小的一个为正极。

B、将万用表置于R×

1k挡,测量红外发光二极管的正、反向电阻,通常,正向

电阻应在30k左右,反向电阻要在500k以上,这样的管子才可正常使用。

要求反向电阻越大越好。

10、红外接收二极管的检测

A、识别管脚极性

(a)、从外观上识别。

常见的红外接收二极管外观颜色呈黑色。

识别引脚时,面对受光窗口,从左至右,分别为正极和负极。

另外,在红外接收二极管的管体顶端有一个小斜切平面,通常带有此斜切平面一端的引脚为负极,另一端为正极。

(b)、将万用表置于R×

1k挡,用来判别普通二极管正、负电极的方法进行检查,即交换红、黑表笔两次测量管子两引脚间的电阻值,正常时,所得阻值应为一大一小。

以阻值较小的一次为准,红表笔所接的管脚为负极,黑表笔所接的管脚为正极。

B、检测性能好坏。

用万用表电阻挡测量红外接收二极管正、反向电阻,根据正、反向电阻值的大小,即可初步判定红外接收二极管的好坏。

11、激光二极管的检测

1k挡,按照检测普通二极管正、反向电阻的方法,即可将激光二极管的管脚排列顺序确定。

但检测时要注意,由于激光二极管的正向压降比普通二极管要大,所以检测正向电阻时,万用表指针仅略微向右偏转而已,而反向电阻则为无穷大。

12、双基极二极管的检测

A.电极的判别将万用表置于R×

1k档,用两表笔测量双基极二极管三个电极中任意两个电极间的正反向电阻值,会测出有两个电极之间的正、反向电阻值均为2~10kΩ,这两个电极即是基极B1和基极B2,另一个电极即是发射极E。

再将黑表笔接发射极E,用红表笔依次去接触另外两个电极,一般会测出两个不同的电阻值。

有阻值较小的一次测量中,红表笔接的是基极B2,另一个电极即是基极B1。

B.性能好坏的判断双基极二极管性能的好坏可以通过测量其各极间的电阻值是否正常来判断。

1k档,将黑表笔接发射极E,红表笔依次接两个基极(B1和B2),正常时均应有几千欧至十几千欧的电阻值。

再将红表笔接

发射极E,黑表笔依次接两个基极,正常时阻值为无穷大。

双基极二极管两个基极(B1和B2)之间的正、反向电阻值均为2~10kΩ范围内,若测得某两极之间的电阻值与上述正常值相差较大时,则说明该二极管已损坏。

13、桥堆的检测

A.全桥的检测大多数的整流全桥上,均标注有“+”、“-”、“~”符号(其中“+”为整流后输出电压的正极,“-”为输出电压的负极,“~”为交流电压输入端),很容易确定出各电极。

检测时,可通过分别测量“+”极与两个“~”极、“-”极与两个“~”之间各整流二极管的正、反向电阻值(与普通二极管的测量方法相同)是否正常,即可判断该全桥是否已损坏。

若测得全桥内鞭只二极管的正、反向电阻值均为0或均为无穷大,则可判断该二极管已击穿或开路损坏。

B.半桥的检测半桥是由两只整流二极管组成,通过用万用表分别测量半桥内部的两只二极管的正、反电阻值是否正常,即可判断出该半桥是否正常。

14、高压硅堆的检测

高压硅堆内部是由多只高压整流二极管(硅粒)串联组成,检测时,可用万用表的R×

10k档测量其正、反向电阻值。

正常的高压硅堆,其正向电阻值大于200kΩ,反向电阻值为无穷大。

若测得其正、反向均有一定电阻值,则说明该高压硅堆已软击穿损坏。

15、变阻二极管的检测

10k档测量变阻二极管的正、反向电阻值,正常的高频变阻二极管的正向电阻值(黑表笔接正极时)为4.5~6kΩ,反向电阻值为无穷大。

若测得其正、反向电阻值均很小或均为无穷大,则说明被测变阻二极管已损坏。

16、肖特基二极管的检测

二端型肖特基二极管可以用万用表R×

1档测量。

正常时,其正向电阻值(黑表笔接正极)为2.5~3.5Ω,投向电阻值为无穷大。

若测得正、反电阻值均为无穷大或均接近0,则说明该二极管已开路或击穿损坏。

三端型肖特基二极管应先测出其公共端,判别出共阴对管,还是共阳对管,然后再分别测量两个二极管的正、反向电阻值。

二、三极管的检测方法

1、中、小功率三极管的检测

A、已知型号和管脚排列的三极管,可按下述方法来判断其性能好坏

(a)、测量极间电阻。

100或R×

1k挡,按照红、黑表笔的六种不同接法进行测试。

其中,发射结和集电结的正向电阻值比较低,其他四种接法测得的电阻值都很高,约为几百千欧至无穷大。

但不管是低阻还是高阻,硅材料三极管的极间电阻要比锗材料三极管的极间电阻大得多。

(b)、三极管的穿透电流ICEO的数值近似等于管子的倍数β和集电结的反向电流ICBO的乘积。

ICBO随着环境温度的升高而增长很快,ICBO的增加必然造成ICEO的增大。

而ICEO的增大将直接影响管子工作的稳定性,所以在使用中应尽量选用ICEO小的管子。

通过用万用表电阻直接测量三极管e-c极之间的电阻方法,可间接估计ICEO的大小,具体方法如下:

万用表电阻的量程一般选用R×

1k挡,对于PNP管,黑表管接e极,红表笔接c极,对于NPN型三极管,黑表笔接c极,红表笔接e极。

要求测得的电阻越大越好。

e-c间的阻值越大,说明管子的ICEO越小;

反之,所测阻值越小,说明被测管的ICEO越大。

一般说来,中、小功率硅管、锗材料低频管,其阻值应分别在几百千欧、几十千欧及十几千欧以上,如果阻值很小或测试时万用表指针来回晃动,则表明ICEO很大,管子的性能不稳定。

(c)、测量放大能力(β)。

目前有些型号的万用表具有测量三极管hFE的刻度线及其测试插座,可以很方便地测量三极管的放大倍数。

先将万用表功能开关拨至?

挡,量程开关拨到ADJ位置,把红、黑表笔短接,调整调零旋钮,使万用表指针指示为零,然后将量程开关拨到hFE位置,并使两短接的表笔分开,把被测三极管插入测试插座,即可从hFE刻度线上读出管子的放大倍数。

另外:

有此型号的中、小功率三极管,生产厂家直接在其管壳顶部标示出不同色点来表明管子的放大倍数β值,其颜色和β值的对应关系如表所示,但要注意,各厂家所用色标并不一定完全相同。

B、检测判别电极

(a)、判定基极。

1k挡测量三极管三个电极中每两个极之

间的正、反向电阻值。

当用第一根表笔接某一电极,而第二表笔先后接触另外两个电极均测得低阻值时,则第一根表笔所接的那个电极即为基极b。

这时,要注意万用表表笔的极性,如果红表笔接的是基极b。

黑表笔分别接在其他两极时,测得的阻值都较小,则可判定被测三极管为PNP型管;

如果黑表笔接的是基极b,红表笔分别接触其他两极时,测得的阻值较小,则被测三极管为NPN型管。

(b)、判定集电极c和发射极e。

(以PNP为例)将万用表置于R×

1k挡,红表笔基极b,用黑表笔分别接触另外两个管脚时,所测得的两个电阻值会是一个大一些,一个小一些。

在阻值小的一次测量中,黑表笔所接管脚为集电极;

在阻值较大的一次测量中,黑表笔所接管脚为发射极。

C、判别高频管与低频管

高频管的截止频率大于3MHz,而低频管的截止频率则小于3MHz,一般情况下,二者是不能互换的。

D、在路电压检测判断法

在实际应用中、小功率三极管多直接焊接在印刷电路板上,由于元件的安装密度大,拆卸比较麻烦,所以在检测时常常通过用万用表直流电压挡,去测量被测三极管各引脚的电压值,来推断其工作是否正常,进而判断其好坏。

2、大功率晶体三极管的检测

利用万用表检测中、小功率三极管的极性、管型及性能的各种方法,对检测大功率三极管来说基本上适用。

但是,由于大功率三极管的工作电流比较大,因而其PN结的面积也较大。

PN结较大,其反向饱和电流也必然增大。

所以,若像测量中、小功率三极管极间电阻那样,使用万用表的R×

1k挡测量,必然测得的电阻值很小,好像极间短路一样,所以通常使用R×

1挡检测大

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 初中教育 > 科学

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2