新能源汽车核心技术详解电池包和BMSVCU MCUWord文档格式.docx

上传人:b****3 文档编号:6516835 上传时间:2023-05-06 格式:DOCX 页数:13 大小:485.64KB
下载 相关 举报
新能源汽车核心技术详解电池包和BMSVCU MCUWord文档格式.docx_第1页
第1页 / 共13页
新能源汽车核心技术详解电池包和BMSVCU MCUWord文档格式.docx_第2页
第2页 / 共13页
新能源汽车核心技术详解电池包和BMSVCU MCUWord文档格式.docx_第3页
第3页 / 共13页
新能源汽车核心技术详解电池包和BMSVCU MCUWord文档格式.docx_第4页
第4页 / 共13页
新能源汽车核心技术详解电池包和BMSVCU MCUWord文档格式.docx_第5页
第5页 / 共13页
新能源汽车核心技术详解电池包和BMSVCU MCUWord文档格式.docx_第6页
第6页 / 共13页
新能源汽车核心技术详解电池包和BMSVCU MCUWord文档格式.docx_第7页
第7页 / 共13页
新能源汽车核心技术详解电池包和BMSVCU MCUWord文档格式.docx_第8页
第8页 / 共13页
新能源汽车核心技术详解电池包和BMSVCU MCUWord文档格式.docx_第9页
第9页 / 共13页
新能源汽车核心技术详解电池包和BMSVCU MCUWord文档格式.docx_第10页
第10页 / 共13页
新能源汽车核心技术详解电池包和BMSVCU MCUWord文档格式.docx_第11页
第11页 / 共13页
新能源汽车核心技术详解电池包和BMSVCU MCUWord文档格式.docx_第12页
第12页 / 共13页
新能源汽车核心技术详解电池包和BMSVCU MCUWord文档格式.docx_第13页
第13页 / 共13页
亲,该文档总共13页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

新能源汽车核心技术详解电池包和BMSVCU MCUWord文档格式.docx

《新能源汽车核心技术详解电池包和BMSVCU MCUWord文档格式.docx》由会员分享,可在线阅读,更多相关《新能源汽车核心技术详解电池包和BMSVCU MCUWord文档格式.docx(13页珍藏版)》请在冰点文库上搜索。

新能源汽车核心技术详解电池包和BMSVCU MCUWord文档格式.docx

1.1消费者角度

消费者角度通常按照混合度进行划分,可分为起停、弱混、中混、强混、插电和纯电动,节油效果和成本增等指标加如表1所示。

表中“-”表示无此功能或较弱、“+”个数越多表示效果越好,从表中可以看出随着节油效果改善、成本增加也较多。

1.2技术角度

图1技术角度分类

技术角度由简到繁分为纯电动、串联混合动力、并联混合动力及混联混合动力,具体如图1所示。

其中P0表示BSG(Beltstartergenerator,带传动启停装置)系统,P1代表ISG(Integratedstartergenerator,启动机和发电机一体化装置)系统、电机处于发动机和离合器之间,P2中电机处于离合器和变速器输入端之间,P3表示电机处于变速器输出端或布置于后轴,P03表示P0和P3的组合。

从统计表中可以看出,各种结构在国内外乘用或商用车中均得到广泛应用,相对来说P2在欧洲比较流行,行星排结构在日系和美系车辆中占主导地位,P03等组合结构在四驱车辆中应用较为普遍、欧蓝德和标致3008均已实现量产。

新能源车型选择应综合考虑结构复杂性、节油效果和成本增加,例如由通用、克莱斯勒和宝马联合开发的三行星排双模系统,尽管节油效果较好,但由于结构复杂且成本较高,近十年间的市场表现不尽如人意。

2新能源汽车模块规划

尽管新能源汽车分类复杂,但其中共用的模块较多,在开发过程中可采用模块化方法,共享平台、提高开发速度。

总体上讲,整个新能源汽车可分为三级模块体系、如图2所示,一级模块主要是指执行系统,包括充电设备、电动附件、储能系统、发动机、发电机、离合器、驱动电机和齿轮箱。

二级模块分为执行系统和控制系统两部分,执行部分包括充电设备的地面充电机、集电器和车载充电机,储能系统的单体、电箱和PACK,发动机部分的气体机、汽油机和柴油机,发电机的永磁同步和交流异步,离合器中的干式和湿式,驱动电机的永磁同步和交流异步,齿轮箱部分的有级式自动变速器(包括AMT、AT和DCT等)、行星排和减速齿轮;

二级模块的控制系统包括BMS、ECU、GCU、CCU、MCU、TCU和VCU,分别表示电池管理系统、发动机电子控制单元、发电机控制器、离合器控制单元、电机控制器、变速器控制系统和整车控制器。

三级模块体系中,包括电池单体的功率型和能量型,永磁和异步电机的水冷和风冷形式,控制系统的三级模块主要包括硬件、底层和应用层软件。

图2三级模块体系

根据功能和控制的相似性,三级模块体系的部分模块可组成纯电动(含增程式)、插电并联混动和插电混联混动三种平台架构,例如纯电动(含增程式)由充电设备、电动附件、储能系统、驱动电机和齿轮箱组成。

各平台模块的通用性较强,采用平台和模块的开发方法,可共享核心部件资源,提升新能源系统的安全性和可靠性,缩短周期、降低研发及采购成本。

3新能源三大核心技术

在三级模块体系和平台架构中,整车控制器(VCU)、电机控制器(MCU)和电池管理系统(BMS)是最重要的核心技术,对整车的动力性、经济性、可靠性和安全性等有着重要影响。

3.1VCU

VCU是实现整车控制决策的核心电子控制单元,一般仅新能源汽车配备、传统燃油车无需该装置。

VCU通过采集油门踏板、挡位、刹车踏板等信号来判断驾驶员的驾驶意图;

通过监测车辆状态(车速、温度等)信息,由VCU判断处理后,向动力系统、动力电池系统发送车辆的运行状态控制指令,同时控制车载附件电力系统的工作模式;

VCU具有整车系统故障诊断保护与存储功能。

图3为VCU的结构组成,共包括外壳、硬件电路、底层软件和应用层软件,硬件电路、底层软件和应用层软件是VCU的关键核心技术。

图3VCU组成

VCU硬件采用标准化核心模块电路(32位主处理器、电源、存储器、CAN)和VCU专用电路(传感器采集等)设计;

其中标准化核心模块电路可移植应用在MCU和BMS,平台化硬件将具有非常好的可移植性和扩展性。

随着汽车级处理器技术的发展,VCU从基于16位向32位处理器芯片逐步过渡,32位已成为业界的主流产品。

底层软件以AUTOSAR汽车软件开放式系统架构为标准,达到电子控制单元(ECU)开发共平台的发展目标,支持新能源汽车不同的控制系统;

模块化软件组件以软件复用为目标,以有效提高软件质量、缩短软件开发周期。

应用层软件按照V型开发流程、基于模型开发完成,有利于团队协作和平台拓展;

采用快速原型工具和模型在环(MIL)工具对软件模型进行验证,加快开发速度;

策略文档和软件模型均采用专用版本工具进行管理,增强可追溯性;

驾驶员转矩解析、换挡规律、模式切换、转矩分配和故障诊断策略等是应用层的关键技术,对车辆动力性、经济性和可靠性有着重要影响。

3.2MCU

MCU是新能源汽车特有的核心功率电子单元,通过接收VCU的车辆行驶控制指令,控制电动机输出指定的扭矩和转速,驱动车辆行驶。

实现把动力电池的直流电能转换为所需的高压交流电、并驱动电机本体输出机械能。

同时,MCU具有电机系统故障诊断保护和存储功能。

MCU由外壳及冷却系统、功率电子单元、控制电路、底层软件和控制算法软件组成,具体结构如图4所示。

图4MCU组成

MCU硬件电路采用模块化、平台化设计理念(核心模块与VCU同平台),功率驱动部分采用多重诊断保护功能电路设计,功率回路部分采用汽车级IGBT模块并联技术、定制母线电容和集成母排设计;

结构部分采用高防护等级、集成一体化液冷设计。

与VCU类似,MCU底层软件以AUTOSAR开放式系统架构为标准,达到ECU开发共同平台的发展目标,模块化软件组件以软件复用为目标。

应用层软件按照功能设计一般可分为四个模块:

状态控制、矢量算法、需求转矩计算和诊断模块。

其中,矢量算法模块分为MTPA控制和弱磁控制。

MCU关键技术方案包括:

基于32位高性能双核主处理器;

汽车级并联IGBT技术,定制薄膜母线电容及集成化功率回路设计,基于AutoSAR架构平台软件及先进SVPWMPMSM控制算法;

高防护等级壳体及集成一体化水冷散热设计。

表3为世界主流MCU硬件供应商的技术参数,代表着MCU的发展动态。

3.3电池包和BMS

电池包是新能源汽车核心能量源,为整车提供驱动电能,它主要通过金属材质的壳体包络构成电池包主体。

模块化的结构设计实现了电芯的集成,通过热管理设计与仿真优化电池包热管理性能,电器部件及线束实现了控制系统对电池的安全保护及连接路径;

通过BMS实现对电芯的管理,以及与整车的通讯及信息交换。

电池包组成如图5所示,包括电芯、模块、电气系统、热管理系统、箱体和BMS。

BMS能够提高电池的利用率,防止电池出现过充电和过放电,延长电池的使用寿命,监控电池的状态。

图5电池包组成

BMS是电池包最关键的零部件,与VCU类似,核心部分由硬件电路、底层软件和应用层软件组成。

但BMS硬件由主板(BCU)和从板(BMU)两部分组成,从版安装于模组内部,用于检测单体电压、电流和均衡控制;

主板安装位置比较灵活,用于继电器控制、荷电状态值(SOC)估计和电气伤害保护等。

BMU硬件部分完成电池单体电压和温度测量,并通过高可靠性的数据传输通道与BCU模块进行指令及数据的双向传输。

BCU可选用基于汽车功能安全架构的32位微处理器完成总电压采集、绝缘检测、继电器驱动及状态监测等功能。

底层软件架构符合AUTOSAR标准,模块化开发容易实现扩展和移植,提高开发效率。

应用层软件是BMS的控制核心,包括电池保护、电气伤害保护、故障诊断管理、热管理、继电器控制、从板控制、均衡控制、SOC估计和通讯管理等模块,应用层软件架构如图6所示。

图6应用层软件架构

表4为国内外主流BMS供应商的技术参数,代表着BMS的发展动态。

4充电设施

充电设施不完善是阻碍新能源汽车市场推广的重要因素,对特斯拉成功的解决方案进行分析,并提出新能源汽车的充电解决方案、剖析充电系统组成。

4.1特斯拉充电方案分析

特斯拉超级充电器代表了当今世界最先进的充电技术,它为MODELS充电的速度远高于大多数充电站,表5为特斯拉电池和充电参数。

特斯拉具有5种充电方式,采用普通110/220V市电插座充电,30小时充满;

集成的10kW充电器,10小时充满;

集成的20kW充电器,5小时充满;

一种快速充电器可以装在家庭墙壁或者停车场,充电时间可缩短为5小时;

45分钟能充80%的电量、且电费全免,这种快充装置仅在北美市场比较普遍。

特斯拉使用太阳能电池板遮阳棚的充电站,既可以抵消能源消耗又能够遮阳。

与在加油站加油需要付费不同,经过适当配置的MODELS可以在任何开放充电站免费充电。

特斯拉充电技术特点可总结如下两点:

1)特斯拉充电站加入了太阳能充电技术,这一技术使充电站尽可能使用清洁能源,减少对电网的依赖,同时也减少了对电网的干扰,国内这一技术也能实现。

2)特斯拉充电时间短也不足为奇,特斯拉的充电机容量大90~120kWh,充电倍率0.8C,跟普通快充一样,并没有采用更大的充电倍率,所以不会影响电池寿命;

20分钟充到40%,就能满足续航要求,主要原因是电池容量大。

4.2充电解决方案

图7充电系统组成

图7为一种可参考的新能源汽车充电解决方案,充电系统组成:

配电系统(高压配电柜、变压器、无功补偿装置和低压开关柜)、充电系统(充电柜和充电机终端)以及储能系统(储能电池与逆变器柜)。

无功补偿装置解决充电系统对电网功率因数影响,充电柜内充电机一般都具备有源滤波功能、解决谐波电流和功率因数问题。

储能电池和逆变器柜解决老旧配电系统无法满足充电站容量要求、并起到削峰填谷作用,在不充电时候进行储能,大容量充电且配电系统容量不足时释放所储能量进行充电。

如果新建配电系统容量足够,储能电池和逆变器柜可以不选用。

风力发电和光伏发电为充电系统提供清洁能源,尽量减少从电网取电。

5总结

从消费者和技术角度分别对新能源汽车结构进行归纳分类,分析各种结构的优势,以及国内外各主机厂的应用情况。

分析新能源汽车的模块组成和平台架构,详细介绍了三级模块体系中相关的执行系统和控制系统。

分析VCU、MCU和BMS的结构组成及关键技术,以及世界主流供应商的技术参数和发展动态。

对特斯拉成功的解决方案进行分析,并提出新能源汽车的充电解决方案。

作者:

杨伟斌

文章来源:

OFweek

‹MCU厂商基本实现了物联网云连接即插即用基于Kinetis微控制器的三相电表设计›

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 表格模板 > 合同协议

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2