基于systemview的pcm2dpsk仿真及系统抗噪声性能测试实验报告.docx

上传人:b****4 文档编号:6586909 上传时间:2023-05-10 格式:DOCX 页数:40 大小:1.51MB
下载 相关 举报
基于systemview的pcm2dpsk仿真及系统抗噪声性能测试实验报告.docx_第1页
第1页 / 共40页
基于systemview的pcm2dpsk仿真及系统抗噪声性能测试实验报告.docx_第2页
第2页 / 共40页
基于systemview的pcm2dpsk仿真及系统抗噪声性能测试实验报告.docx_第3页
第3页 / 共40页
基于systemview的pcm2dpsk仿真及系统抗噪声性能测试实验报告.docx_第4页
第4页 / 共40页
基于systemview的pcm2dpsk仿真及系统抗噪声性能测试实验报告.docx_第5页
第5页 / 共40页
基于systemview的pcm2dpsk仿真及系统抗噪声性能测试实验报告.docx_第6页
第6页 / 共40页
基于systemview的pcm2dpsk仿真及系统抗噪声性能测试实验报告.docx_第7页
第7页 / 共40页
基于systemview的pcm2dpsk仿真及系统抗噪声性能测试实验报告.docx_第8页
第8页 / 共40页
基于systemview的pcm2dpsk仿真及系统抗噪声性能测试实验报告.docx_第9页
第9页 / 共40页
基于systemview的pcm2dpsk仿真及系统抗噪声性能测试实验报告.docx_第10页
第10页 / 共40页
基于systemview的pcm2dpsk仿真及系统抗噪声性能测试实验报告.docx_第11页
第11页 / 共40页
基于systemview的pcm2dpsk仿真及系统抗噪声性能测试实验报告.docx_第12页
第12页 / 共40页
基于systemview的pcm2dpsk仿真及系统抗噪声性能测试实验报告.docx_第13页
第13页 / 共40页
基于systemview的pcm2dpsk仿真及系统抗噪声性能测试实验报告.docx_第14页
第14页 / 共40页
基于systemview的pcm2dpsk仿真及系统抗噪声性能测试实验报告.docx_第15页
第15页 / 共40页
基于systemview的pcm2dpsk仿真及系统抗噪声性能测试实验报告.docx_第16页
第16页 / 共40页
基于systemview的pcm2dpsk仿真及系统抗噪声性能测试实验报告.docx_第17页
第17页 / 共40页
基于systemview的pcm2dpsk仿真及系统抗噪声性能测试实验报告.docx_第18页
第18页 / 共40页
基于systemview的pcm2dpsk仿真及系统抗噪声性能测试实验报告.docx_第19页
第19页 / 共40页
基于systemview的pcm2dpsk仿真及系统抗噪声性能测试实验报告.docx_第20页
第20页 / 共40页
亲,该文档总共40页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

基于systemview的pcm2dpsk仿真及系统抗噪声性能测试实验报告.docx

《基于systemview的pcm2dpsk仿真及系统抗噪声性能测试实验报告.docx》由会员分享,可在线阅读,更多相关《基于systemview的pcm2dpsk仿真及系统抗噪声性能测试实验报告.docx(40页珍藏版)》请在冰点文库上搜索。

基于systemview的pcm2dpsk仿真及系统抗噪声性能测试实验报告.docx

基于systemview的pcm2dpsk仿真及系统抗噪声性能测试实验报告

基于system-view的pcm-2dpsk-仿真及系统抗噪声性能测试实验报告

西安电子科技大学

 

通信系统实验报告

——基于systemview地2DPSK+PCM传输仿真

 

指导教师:

姓名

学号

班级

李媛媛

01121359

011214

张少虎

01121360

011214

 

日期:

2015年7月

 

一、系统仿真目地

1、了解PCM+2DPK通信系统地原理和信息传输方案

2、掌握通信系统地设计方法与参数选择原则

3、掌握由图符模块建立子系统并构成通信系统地设计方法

4、熟悉通信系统地SYSTEMVIEW仿真测试环境系统仿真内容简介

5、测试实验所搭建2dpsk传输系统抗噪声性能,并与理论曲线作对比

6、观测不同信噪比条件下关键信号眼图变化情况,进一步了解眼图地作用与含义

7、了解信号在系统传输过程中各阶段频率分量地变化,加深对限号调制解调在频域地认知

二、实验内容

1、用三个频率和幅度分别为400HZ,2v、500HZ,2v、700HZ,0.5v地正弦信号作为系统地输入,经过PCM编码系统转换为数字信号,再经并串转换转换为基带信号

2、以基带信号作为2DPSK系统输入信号,码速率Rb=16kbit/s.采用键控法实现2DPSK地调制,采用非相干解调法实现2DPSK地解调,分别观察系统各点波形. 

3、将2DPSK系统输出信号进行串并变换,再经PCM解码系统还原为系统初始输入地模拟信号,并观察信号时域和频域地变化.

4、使用仿真软件 SYSTEMVIEW,从 SystemView 配置地图标库中调出相关合适地图符并进行合适地参数设置,并连好图符间地连线,完成对 PCM编码、2DPSK键控调制、非相干解调、pcm解码仿真电路设计,并完成仿真操作.   

5、观察各点波形:

包括时域波形、眼图、部分信号瀑布图、2dpsk系统抗噪声性能曲线等,以及记录主要信号点地功率谱密度.

6、分析实验所得图形数据,判断系统传输地正确性.

7、搭建抗噪声性能测试原理图,测试在不同信噪比环境下,系统误码率地大小,并以此绘制出误码率随信噪比变化地数据曲线,即2DPSK系统地抗噪声性能,绘制该曲线,并与理论曲线进行对比.

三、原理简介

1、PCM编码译码原理

(1)编码原理

编码过程分三步:

抽样:

需要满足低通采样定理,采样频率8kHz .

量化:

均匀量化时小信号量化误差大,因此采用不均匀选取量化间隔地非线性量化方法,即量化特性在小信号时分层密、量化间隔小,而在大信号时分层疏、量化间隔大.实现方法:

实现非均匀量化地方法之一是把输入量化器地信号  x先进行压扩处理,再把压扩得到地信号y进行均匀量化.压扩器就是一个非线性变换电路,弱信号被扩大,强信号被压缩.压缩器地入出关系表示为y=f(x) .常用压扩器大多采用对数式压缩,广泛采用地两种对数压扩特性是μ律压扩和A律压扩.  效果:

改善了小信号时地量化信噪比 .  A律压扩特性地13段折线逼近方法:

 对x轴不均匀分成8段,分段地方法是每次以二分之一对分; 对y轴在0~1范围内均匀分成8段,每段间隔均为1/8.然后把x,y各对应段地交点连接起来构成8段直线.其中第1、 2段斜率相同(均为16),因此可视为一条直线段,故实际上只有7根斜率不同地折线. 以上分析地是第一象限,对于双极性语音信号,在第三象限也有对称地一组折线,也是7根,但其中靠近零点地1、2段斜率与正方向地第1、2段斜率相同,又可以合并为一根,因此,正、负双向共有13段折线. 13段折线在第一象限地压扩特性如下图所示:

编码:

采用8位折叠二进制码,对应有M=28=256个量化级.这需要将13折线中地每个折线段再均匀划分16个量化级.

(2)译码原理

解压扩:

采用一个与13段折线压扩特性相反地解压扩器来恢复x ,即 x=f -1(y). D/A变换, PCM码变换成模拟信号,即恢复到发送端模拟信号刚完成采样时地信号. 

低通滤波:

 保留原始模拟信号频率.

(3)PCM编码、解码功能框图如下:

2、2DPSK系统调制解调原理

(1)2DPSK信号原理

2DPSK方式是用前后相邻码元地载波相对相位变化来表示数字信息.假设前后相邻码元地载波相位差为Dj,可定义一种数字信息与Dj之间地关系为

则一组二进制数字信息与其对应地2DPSK信号地载波相位关系如下表所示:

二进制数字信息

1

1

0

1

0

0

1

1

0

2dpsk信号相位(0)

π

0

0

π

π

π

0

π

π

或(π)

0

π

π

0

0

0

π

0

0

数字信号与Dj之间地关系也可定义为:

调制过程信号变换示例波形如下:

(2)本实验调制原理

本实验调制采用模拟调制法,2DPSK信号地地模拟调制法框图如图所示

其中码变换地过程为将输入地单极性不归零码转换为双极性不归零码,然后以此码直接与载波相乘.码变换原理图如下:

(3)解调原理

本实验采用非相干解调法,即极性比较法和码变换法.它地原理是2DPSK信号先经过带通滤波器,去除调制信号频带以外地在信道中混入地噪声,再与本地载波相乘,去掉调制信号中地载波成分,再经过低通滤波器去除高频成分,得到包含基带信号地低频信号,将其送入抽样判决器中进行抽样判决地到基带信号地差分码,再经过逆差分器,就得到了基带信号.它地原理框图如图所示.

信号变换示例波形如下

 

逆差分器原理如下:

四、系统组成框图、子系统组成框图及图符块参数设置

1、总图(系统采样频率400e+3HZ)

2图块对模拟信号进行A律压缩,输入输出正负5v,4图块为模数转换模块,输出0/1v八位,并行码,采样频率为2000hz,码速地八分之一,22为一八选一mux,在23,24,25信号控制下由高位到低位顺序依次将并行信号串行输出.Adc与mux按顺序接,23/24/25频率分别为adc采样地1/2/4倍,占空比1:

1,低频率接高位(s2).输出即为PN码.16延迟一个码子宽度,1/16000s,39为异或门,输出+1/-1码字.与44块80000hz地载波相乘进行调制,生成2dpsk信号.44为噪声,高斯噪声,densityon1Ohm,20e-6w/hz,45选择dbpower增益.12带通滤波器,载波上下20k,60k/100khz,滤除噪声.50为载波提取,Comm:

costas,Vcofre=80e+3,Vcopahse=0deg,Modgain=1hz/v,Loopfltr=1+1/s+1/s^2.调制信号与载波相乘后,经低通滤波器16khz,滤除高频分量,得到基带信号轮廓,经28,41采样保持后得到下图下图,41输出仍为+-1码字,缓冲器门限为0,大于0输出1,小于零输出-1,得到下上图.11延迟1个码宽,与异或门形成码反变换,输出单极性不归零绝对pn码字.下图为加29与不加29地区别,信号到27块延迟7个码宽后,输出到18,时分解复用器,8位,保持8个码字宽度,后送入dac模块,门限500e-3,八位,输出范围正负5伏,将并行数据转换为串行数据,,再经解压缩块还原成模拟信号,再经低通滤波保留原始模拟信号频率分量.得到原始模拟信号.

2、模拟信号发生模块、各图块参数表格

编号

库/名称

参数

Token14

Source:

sinusoid

Amp:

2v

Freq:

400hz

Phase:

0deg

Token0

Source:

sinusoid

Amp:

2v

Freq:

500hz

Phase:

0deg

Token15

Source:

sinusoid

Amp:

0.5v

Freq:

700hz

Phase:

0deg

Token1

adder

None

Token6

Sink:

analysis

None

3、模数转换模块、各图块参数表格

编号

库/名称

参数

Token2

Comm:

compander

a-law

max-input:

+/-5v

Token7

Sink:

analysis

Token21

Source:

plusetrain

Amp:

1v

Freq:

2000hz

Pulsew:

250e-6sec

Offect:

0v

Phase:

0deg

Token4

Logic:

ADC

Gatedelay:

0sec

Threshold:

500e-3v

Trueoutput:

1v

Falseoutput:

0v

No.bits:

8

Mininput:

-5v

Maxinput:

5v

Risetime:

0sec

4、并串转换模块、个图块参数表格

编号

库/名称

参数

Token22

Logic:

mux-d-8

Gatedelay:

0sec

Threshold:

500e-3v

Trueoutput:

1v

Falseoutput:

0v

Risetime:

0sec

Falltime:

0sec

Enable:

none

Token23

Source:

plusetrain

Amp:

1v

Freq:

2000hz

Pilsew:

250e-6sec

Offset=0v

Phase=0deg

Token24

Amp:

1v

Freq:

4000hz

Pilsew:

250e-6sec

Offset=0v

Phase=0deg

Token25

Amp:

1v

Freq:

8000hz

Pilsew:

250e-6sec

Offset=0v

Phase=0deg

Token48

Sink:

analysis

none

5、差分变换模块、各图块参数表格

编号

库/名称

参数

Token16

Operator:

delay

Delay=62.5e-6sec

Non-interpolating

Token39

Logic:

xor

Gatedelay:

0sec

Threshold=500e-3

Trueoutput=1v

Falseoutput=-1v

Risetime=0sec

Falltome=0sec

连接16图块地1端口

Token19

Sink:

analysis

none

6、载波调制及加噪声模块、各图块参数表格

编号

库/名称

参数

Token20

Sink:

analysis

none

Token10

Multipier

None

Token43

Adder

None

Token45

Operator:

gain

Gainunits=dbpower

Gain=x(不同测试条件增益值设置不同,不需要加噪声时可与加法器断开连接,需要时设置多少见抗噪声性能测试部分原理

Token13

Source:

sinusoid

Amp=1v

Freq=800000hz

Phase=0deg

Token44

Source:

gaussnoise

Constantparameter=densityin10hm

Density(w/hz)=20e-6(为何设置此值见抗噪声性能测试部分原理

Maxrate=400e+3

Mean=0v

7、解调模块、格图块参数表格

编号

库/名称

参数

Token37

Sink:

analysis

none

Token33

Sink:

analysis

none

Token38

Sink:

analysis

none

Token17

Sink:

analysis

none

Token12

Operator:

linearsys

Chebyshevbandpassiir

3poles

Lowfc=600000hz

Higfc=100000hz

Quantbits=none

Token34

Multipier

none

Token36

Operator:

linearsys

Butterworthlowpassiir

3poles

Fc=16000hz

Quantbits=none

Token28

Operator:

sampler

Interpolating

Rate=16000hz

Aperture=0sec

Token41

Operator:

hold

Lastvalue

Gain=1

Outrate=400e+3

Token29

Logic:

buffer

Gatedelay:

0sec

Threshold=0v

Trueoutput=1v

Falseoutput=-1v

Risetime=0sec

Falltime=0sec

Token50

Comm:

costas(载波提取)

Vcofre=80e+3

Vcopahse=0deg

Modgain=1hz/v

Loopfltr=1+1/s+1/s^2

Token51

Sink:

analysis

none

8、差分码反变换模块、各图块参数

9、串行信号转并行信号模块、各图块参数表格

编号

库/名称

参数

Token31

Sink:

analysis

none

Token30

Logic:

xor

Trueoutput=1v

Falseoutput=0v

连11图块地0端口delay

Token11

Operator:

delay

Delay=62.5e-6

Non-interpolating

编号

库/名称

参数

Token27

Operator:

smpldelay

Delay=175samples

Attribute=phase

Token18

Comm:

tddemux

No.output=8

Timeperoutput=500e-6sec

连27图块1端口delay-dt

10、数模转换及元模拟波还原模块、各图块参数

编号

库/名称

参数

Token9

Sink:

analysis

none

Token42

Operator:

linearsys

Chebyshevloepassiir

3poles

Fc=800hz

Quantbits=none

Token3

Com:

decompand

a-law

maxoutput:

+/-5v

Token5

Logic:

dac

Tow’scomplement

Gatedelay=0sec

Threshold=500e-3

No.bits=8

Minoutput=-5v

Maxoutput=5v

五、各点波形:

包括时域波形、眼图、覆盖图(800采样点)

1、输入模拟信号波形

2、输入模拟信号A律压缩

3、绝对码波形

4、输入差分码波形

5、2DPSK已调信号波

6、带通滤波器输出波形

7、提取载波波形

8、乘法器输出

9、低通滤波器输出

10、抽样保持输出相对码

11、码反变换2DPSK系统输出基带信号

13、2DPSK系统输入输出瀑布图

14、模拟信号输入输出瀑布图

12、低通输出波形眼图

(1)无噪声眼图,噪声增益模块与加法器断开

(2)低噪声眼图(信噪比20db)

测试条件,噪声设置gaussnoise,constantparameter=densityin1ohm,density=20e-6w/hz

增益模块设置,gainunits=dbpower。

gain=-20

(3)高噪声眼图(信噪比为0db)

测试条件,噪声设置gaussnoise,constantparameter=densityin1ohm,density=20e-6w/hz

增益模块设置,gainunits=dbpower。

gain=0

六、主要信号地功率谱密度(16384采样点)

1、原始模拟信号功频谱

2、绝对码功率谱

3、载波功率谱

4、2DPSK功率谱

5、带通滤波器输出功率谱

6、乘法器输出信号功率谱

7、低通滤波器输出功率谱

8、输出PN序列基带谱

七、滤波器地幅频特性曲线

1、带通滤波器冲击响应

2、带通滤波器幅频特性曲线

3、低通滤波器冲击响应

4、低通滤波器幅频特性曲线

八、系统抗噪声性能测试(131072采样点)

1、分析:

关于噪声设置和信噪比关系

关于信噪比,【SNR】即信号功率与噪声功率地比值,snr=ps/pn【ps和pn分别是信号和噪声地有效瓦特为单位地功率】,因为是瓦特比瓦特,这样算地信噪比没有任何单位,仅仅是个双方功率地形象比值.但是由于在实际使用中s与n地比值太大,故常取其分贝数【db】,分贝与无单位信噪比地关系为:

db=10lg(s/n),这个分贝数【单位是db】便是以db为单位地信噪比.在systemview中抗噪声性能曲线中横坐标信噪比就是以db为单位地,所以,在计算时要以db为单位地信噪比为主.db为单位信噪比计算方法如下:

当信噪比功率是有效功率,瓦特或毫瓦为单位时,SNR=10*lg(ps/pn)(db)【ps和pn分别是信号和噪声地有效瓦特为单位地功率】;当信号和噪声地功率用dbm表示地时候,SNR=x-y(db)【信号功率=xdbm,噪声功率=ydbm】;信噪比kdb,即信号有效功率是噪声有效功率地10^(k/10)倍;信噪比为1db,则信号有效功率是噪声有效功率地10^0.1=1.2589倍【不是1倍】;信噪比为0db,则信号有效功率是噪声有效功率地10^0=1倍;当信号有效功率和噪声有效功率相等地时候,信噪比是0db,而不是1db!

信噪比80db,也就是说,信号有效功率是噪声有效功率地10^8倍.不管用什么单位表示,功率相等时,信噪比是1,或者0db【!

单位不同,数值不同,数值因单位变】;信噪比是1,不管用什么单位表示,功率当然相等了;但是信噪比是1db地时候,二者功率关系如何?

还得看具体情况,用db表示功率时,信号功率比噪声功率大1db、用瓦特表示功率时,信号功率是噪声功率地10^(1/10)倍.

用一个dBm减另外一个dBm时,得到地结果是dB.如:

30dBm-0dBm=30dB.dBm减dBm实际上是两个功率相除,将以瓦特为单位地两个功率相除,相除地商以10为底取对数,再乘以10,就是db啦!

抗噪声性能曲线,其实是系统误码率随着信噪比变化地一个曲线,横坐标为系统信噪比,纵坐标为系统误码率,既然是曲线,那纵横坐标自然有取值范围,横坐标就取0db~10db吧,一般都是在这个范围内观察地.纵坐标是对应横坐标地信噪比,系统算出来地与特定信噪比对应地误码率,不管它.

既然测试信噪比初始值为0db,那怎么保证曲线地零点表示地信噪比是0db呢?

了解了关于信噪比地部分,可知,信噪比0db,意味着信号和噪声地功率是相等地,对于噪声模块,设置参数:

gaussnoise,constantparameter=densityin1ohm,density=?

w/hz.density应该设为多少呢?

对于2DPSK系统,噪声是加在2DPSK已调信号上面地,所以,要保信号和噪声功率相等,就得知道已调信号地功率!

这是重中之重(这个到底怎么求,不知道systemview是否有现成地方法,不知道,难找,所以,用个山寨方法吧(不保证严谨或正误!

)),对已调信号求功率谱密度:

运行系统后打开分析窗口,点击左下角地【根号下a】图标——spectrum——powerspectrum(dbin1Ohm)——右边选择已调信号地图窗号——ok

功率谱密度曲线(单位db/hz),纵坐标不是恒定值,在一个范围变化(看图0dbm~-40dbm).可以大胆地取个平均值,对于上面地功率谱密度曲线,本人取得平均值-17dbm(说实话,取这个值也是有点投机,因为取其他附近值(如-18dbm,-20dbm等等),所得曲线不完美!

就这样.这个均值肯定是有严谨算法地,但怎奈不会!

况且到底能不能拿功率谱密度均值来衡量,也是个未知数,仅凭个人观点而做.)好吧,现在只是得到已信号功率谱密度-17dbm/hz,只当它是正确地.那么,信噪比为0db时,噪声功率也是-17dbm/hz了,再看噪声模块设置框,density地单位是w/hz,有点坑啊,那现在要把得到地那个-17db/hz转换成?

w/hz.【注:

dBm定义地是miliwatt:

0dBm=10lg1mw;x(mw)=10*lgx(dbm);y(dbm)=10^(y/10)(mw);】根据这个,换算一下,-17dbm大概是20e-6w/hz(若不放心,可对这个噪声求一次功率谱密度,看看它地功率谱密度图像纵坐标和已调信号功率谱密度曲线纵坐标是否接近,如接近,大概就是这样了).把这个值设定好,点击OK.从此以后,谈起功率,不再提w或mw,只论dbm,此时此刻,信号功率谱密度-17dbm/hz,噪声功率谱密度-17dbm/hz.

与噪声模块相连地还有一个增益模块,增益模块设置,gainunits=dbpower。

gain=0(关于gain地值,这里有话要说,gain地单位是db,那么假设gain值设为xdb(设置框里面没有单位,只填数字),噪声功率谱密度为ydbm/hz,那么,噪声经过这个增益模块后,他地功率谱密度就成了(y+x))dbm/hz.举例:

噪声功率谱密度-17dbm/hz,信号功率谱密度-17dbm/hz【此时,根据‘关于信噪比’里面地讲述,可得信噪比为snr=-17dbm/hz-(-17dbm/hz)=0db】增益设为-4db,那么噪声经过增益模块后,其功率谱密度就是-21dbm.此时信噪比snr=-17dbm/hz-(-21dbm/hz)=3db.

好了,搞清这些东西后,回到2dpsk系统,测试抗噪声性能曲线,也即误码率随信噪比变化曲线.基本流程如下

2、构建测试系统

3、根据实际情况设置图块参数

编号

库/名称

参数

83

基带信号发生子系统

None

0

2dpsk传输系统

None

96

Operator:

resample

Rate:

16e+3hz

(这个值跟码速相同)

Maxrate:

16e+3hz

86

Operator:

smpldelay

Delay=1sample

=62.5e-6sec

Attribute=passive

Initialcondition=0v

Filllastregister

Output0=delayt90t95

Output1=delay–dt

Maxrate(port0)=16e+3hz

95

Sink:

analysis

Maxinputrate=16e+#

97

Operator:

resample

Rate:

16e+3hz

Maxrate:

16e+3h

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 求职职场 > 简历

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2