德尔福发动机管理系统技术手册.docx

上传人:b****4 文档编号:6627761 上传时间:2023-05-10 格式:DOCX 页数:40 大小:205.01KB
下载 相关 举报
德尔福发动机管理系统技术手册.docx_第1页
第1页 / 共40页
德尔福发动机管理系统技术手册.docx_第2页
第2页 / 共40页
德尔福发动机管理系统技术手册.docx_第3页
第3页 / 共40页
德尔福发动机管理系统技术手册.docx_第4页
第4页 / 共40页
德尔福发动机管理系统技术手册.docx_第5页
第5页 / 共40页
德尔福发动机管理系统技术手册.docx_第6页
第6页 / 共40页
德尔福发动机管理系统技术手册.docx_第7页
第7页 / 共40页
德尔福发动机管理系统技术手册.docx_第8页
第8页 / 共40页
德尔福发动机管理系统技术手册.docx_第9页
第9页 / 共40页
德尔福发动机管理系统技术手册.docx_第10页
第10页 / 共40页
德尔福发动机管理系统技术手册.docx_第11页
第11页 / 共40页
德尔福发动机管理系统技术手册.docx_第12页
第12页 / 共40页
德尔福发动机管理系统技术手册.docx_第13页
第13页 / 共40页
德尔福发动机管理系统技术手册.docx_第14页
第14页 / 共40页
德尔福发动机管理系统技术手册.docx_第15页
第15页 / 共40页
德尔福发动机管理系统技术手册.docx_第16页
第16页 / 共40页
德尔福发动机管理系统技术手册.docx_第17页
第17页 / 共40页
德尔福发动机管理系统技术手册.docx_第18页
第18页 / 共40页
德尔福发动机管理系统技术手册.docx_第19页
第19页 / 共40页
德尔福发动机管理系统技术手册.docx_第20页
第20页 / 共40页
亲,该文档总共40页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

德尔福发动机管理系统技术手册.docx

《德尔福发动机管理系统技术手册.docx》由会员分享,可在线阅读,更多相关《德尔福发动机管理系统技术手册.docx(40页珍藏版)》请在冰点文库上搜索。

德尔福发动机管理系统技术手册.docx

德尔福发动机管理系统技术手册

MT20EMS系统技术手册

第一章系统介绍

第二章58齿同步逻辑及MAPCID

第三章燃油系统

第四章点火系统

第五章怠速系统

第六章空调控制系统

第七章碳罐电磁阀控制

第八章风扇控制

第九章里程累计系统

第十章故障诊断

第一章系统介绍

德尔福发动机管理系统是以德尔福MT20发动机控制模块(ECM)为核心的系统,简称为MT20发动机管理系统。

一、发动机控制模块(ECM)

1.MT20发动机控制模块是德尔福专门为中国地区电喷市场开发的ECM,设计上运用了最新的电子硬件技术,并同时采用了低价位的设计结构,实现了较高的性价比。

硬件上采用了16位微处理器(CPU),具有充足的内存,高强的运算速度,可灵活定义的I/O输入输出口。

软件采用德尔福模块化C语言编写的第二代控制软件。

MT20具备了满足目前欧3法规所需的所有技术规格。

2.MT20的系统功能包括:

1)速度密度空气计量法;

2)闭环控制多点顺序燃油喷射(包括MAPCID压力判缸);

3)无分电器直接点火,由ECM内置点火模块驱动分组点火(也可支持4缸顺序点火);

4)线性EGR控制;

5)步进马达怠速控制;

6)爆震控制;

7)空调、冷却系统控制;

8)里程记忆;

9)电压过高保护;

10)电子防盗;

11)CAN-BUS通讯接口可与自动变速箱控制模块(TCM)或ABS系统通讯。

3.MT20控制软件的特点包括:

1)开放式、模块化C语言编程;

2)可随时采用德尔福全球共享的,持续更新改进的软件模块图书馆;

3)可采用高速串行接口(HSSI)的低价位标定工具。

4.

MT20控制信号图:

二、曲轴位置基准及转速测量

1.系统根据58X齿信号判断曲轴位置及测量发动机转速,精确控制发动机点火及喷油正时;

2.曲轴位置传感器利用58X齿测量曲轴加速度,满足EOBD失火诊断要求。

三、燃油喷射系统

系统采用速度密度法,实现多点顺序喷射,每个发动机循环通过主脉宽及修整脉宽精确供油,并具有闭环控制和自学习功能。

1.硬件采用德尔福第三代喷油器,最新型油压调节器;

2.系统可支持无回油系统;

3.用EOBD系统时可采用后置氧传感器闭环“二次”修正,降低排放。

四、缸序判定技术

1.可采用进气歧管压力传感器缸序判定技术(MAPCID),省略常规的凸轮轴位置传感器及相应的目标轮,从而降低系统总成本;

2.支持常规的凸轮轴位置传感器缸序判定技术。

五、点火系统

1.系统采用无分电器直接点火,ECM“充磁即放”逻辑精确控制充磁及放电时间,由集成于ECM内的点火模块驱动双输出点火线圈,在压缩及排气冲程同时点火;

2.硬件采用德尔福新一代低价位的“铅笔式”点火线圈总成(PCP);

3.可支持4缸顺序点火(各线圈需要独立的驱动器)。

六、怠速控制系统

1.怠速控制系统根据发动机运行状态采用闭环控制、自学习、高原修正和丢步自动调整、智能复位等功能;

2.采用高精度怠速控制阀,实现怠速时的高精度怠速转速控制,并同时保证最大通气量以满足冷启动或自动变速箱、空调的负荷要求;

3.采用电气负载输入信号如大灯、鼓风机、除霜器等,可以预先控制可能出现的怠速波动,通过对点火角与怠速阀的控制使稳定性处在最佳状态;

4.可采用助力转向开关提升怠速,保证转向时的怠速稳定性。

七、废气排放控制

1.ECM根据氧传感器信号采用闭环燃油控制,使催化器达到最高转换效率;

2.用EOBD系统时闭环控制逻辑采用三元催化后置氧传感器信号进行闭环燃油二次修正,可有效地改善生产车及老化车排放一致性,缩小散差,降低三元催化成本;

3.可选用线性废气再循环阀(LEGR)降低发动机NOx排放。

八、三元催化器保护功能

系统具备三元催化器保护功能,ECM软件根据发动机的运行状况估测三元催化的温度,当估测温度长时间高于三元催化器可承受温度时,系统将自动启动三元催化保护功能以控制三元催化温度。

九、蒸发排放污染控制

1.采用德尔福新一代碳罐电磁阀,系统根据发动机运行工况来控制活性碳罐的清洗速率

2.可采用无回油供油系统以降低油箱受回油的加热,减少燃油蒸发。

十、汽车附件控制

1.可同时支持电动发动机冷却水箱风扇(二个或双速)和一个空调冷凝器风扇;

2.支持采用双蒸发器出口气温传感器的空调系统控制,并根据每个空调蒸发器温度独立控制空调系统开启或切断后置蒸发器(若装备);

3.可采用空调系统压力传感器的空调系统控制。

十一、电压过高保护

当充电系统出现故障导致电压过高时系统会进入保护状态,限值发动机转速,避免

ECM的损害。

十二、故障诊断功能

1.具有自身故障诊断功能,会启动故障指示灯(EOBD排放故障时点亮“MIL”灯,其他故障时可点亮“SVS”灯);

2.系统故障时,启动备用的“跛行驶回”功能。

十三、通讯接口

1.可使用故障诊断设备通过串行接口读取电喷系统主要参数或故障码;

2.可采用个人电脑(PC)通过PCHUD或ITS软件读取或记录电喷系统任何参数,便于标定开发;

3.采用欧洲与美洲广泛使用的CAN-BUS车内网络通讯系统,以CAN的通讯方式可与自动变速箱控制模块(TCM)、ABS控制模块以及其他支持CAN的车身控制模块实现整车网络通迅和数据交流,便于整车升级应用最新的技术。

十四、行驶里程记录功能

1.ECM可以在EEPROM里记录车辆行驶里程,便于售后服务及维修;

2.在磨合期内可以根据客户需要采取适当的发动机保护功能,避免发动机过早磨损;

3.当车速传感器出现故障时可采取限制驾驶性的措施。

十五、电子防盗器功能

ECM可以根据电子防盗器特定的通讯协议实现沟通,根据电子防盗器的反馈信息,可靠地实现防盗功能,ECM程序自动识别是否安装了电子防盗器,简化整车生产程序。

第二章58齿同步逻辑及MAPCID

一、58齿同步逻辑

1.目的

58齿同步逻辑是利用曲轴传感器,得到安装在曲轴上的58齿齿圈信号,从而确定曲轴转角。

58齿逻辑主要用于精确确定点火提前角,同时又可用于计算发动机转速、喷油定时、点火闭合角控制等。

2.58齿机构

58齿齿圈是在一均匀60齿的齿圈上,去除2个齿,形成一“缺口”。

利用缺口即可确定曲轴位置,如下图。

容易得知,每个齿对应360/60=6度的曲轴转角。

安装传感器的方法是:

先使1缸和4缸位于上止点,然后将传感器的迎转动边对齐齿圈第20齿的下降沿。

因此1,4缸上止点对应第20齿;2,3缸上止点对应第50齿。

ECM中,缸号1,2,3,4对应真实意义缸号;点火序号为1(=A),3(=B),4(=C)and2(=D).

3.58齿逻辑

58齿逻辑包括2部分:

后台逻辑(每15.6ms执行1次),和中断服务程序(称为:

Events当某些特定的齿经过传感器时触发)。

后台逻辑主要用于计算“ReferencePeriod”,即曲轴转动半圈所用的时间,以#7齿#37齿为界。

58齿Event序列:

共有8个“Event”序列,对应于齿圈不同的齿。

其中有些“Event”对应于固定齿,

而另一些对应的齿会因发动机的工况的不同而改变。

另外,有些Event始终都在运行,而有些只在特定的发动机工况下运行。

Events将由特定的齿触发执行,并且具有不同的优先级。

值得注意的是会有不同的

Events由相同的齿触发,这种情况下,Event对应的程序将按优先级顺序执行。

Event序列和对应的触发齿见下表:

Event名称

位置

应用工况

1

读凸轮轴信号Event

#3齿

Alwayls

2

预-ReferenceEvent1

#6齿

起动,低、中转速的闭合角方式

3

ReferenceEvent1

#7齿

始终

4

喷油Event2b

#7齿

Trimpulse喷油(参见燃油控制)

5.1

闭合角Event1

#8齿

起动和低转速闭合角控制模式

5.2

闭合角Event2

#9齿

起动和低转速闭合角控制模式

5.3

闭合角Event3

#10齿

起动和低转速闭合角控制模式

…….

…….

…….

5.n

闭合角Eventn

#(n+7)齿

起动和低转速闭合角控制模式

6

预-点火Event1

EST1的前1齿

低转速闭合角控制模式

7

点火Event1

可变

低转速和正常转速闭合角控制模式

8

爆震控制Event1

可变

如果选择爆震控制

9

喷油Event1

#22齿

顺序燃油喷射-Normalpulse(参见燃油控制)

10

MAPCIDEvent

标定值

如果选择MAPCID方式

11

预-ReferenceEvent2

#36齿

起动和低中转速闭合角控制模式

12

ReferenceEvent2

#37齿

Always

13.1

喷油Event1b

#37齿

Trimpulse喷油(参见燃油控制)

13.2

闭合角Event1

#38齿

起动和低转速闭合角控制模式

13.3

闭合角Event2

#39齿

起动和低转速闭合角控制模式

闭合角Event3

#40齿

起动和低转速闭合角控制模式

13.n

…….

…….

…….

14

闭合角Eventn

可变#(n+37)

起动和低转速闭合角控制模式

15

预-点火Event2

EST2前1齿

低转速闭合角控制模式

16

点火Event2

可变

低转速和正常转速闭合角控制模式

17

KnockControlEvent2

可变

如果选择爆震控制

18

喷油Event2

#52齿

顺序燃油喷射–Normalpulse(参加燃油控制)

19

同步Event

#54齿

Always

二、MAP传感器判缸

进气压力传感器安装在第1缸或第4缸,采用进气压力传感器信号判别缸序。

原理如下:

进气门打开时,会有1个压降。

通过软件处理,找到这个压降,即实现判缸。

Figure01MAPWaveform

第三章燃油系统

一、启动预喷

启动预喷只在正常启动过程中喷一次。

启动预喷的条件如下:

1.发动机开始转动(ECM至少检测到2个有效的58齿信号);

2.油泵继电器吸合;

3.油泵运转时间超过蓄压延迟时间;

4.启动预喷还没有进行过。

一旦上述条件满足,启动预喷在所有的缸同时进行。

二、BPW(基本喷油脉宽,BasePulseWide)的计算

速度密度法进气流量的计算是基于理想气体状态方程PV=mRT,进气流量

m=1/R×PV×1/T,其中1/R为常数,所以只要知道进气的压力、体积、和温度就可以计算出进入每一汽缸的进气流量。

加上给定的空燃比、喷嘴流量已知就可以计算出喷油脉宽。

理论计算公式如下:

BPWFactor=BPC*VE*1/T*1/(A/F)*F33(BAT)*BLM*DFCO*DE*Re-scalingFactor

BPW=BPWFactor*MAP+CLCORR

1.BPC(基本喷油常数,BasePulseConstant)

基本喷油常数就是为系统提供发动机的排量与喷嘴流量的关系。

BPC=K×(排量÷喷

嘴流量)。

K是与ECM内晶震频率有关的常数。

喷嘴流量与喷嘴喷孔两端的压力有关,对于无回油系统,喷嘴喷孔两端的压力与发动机的进气真空度有关,所以BPC是一个与发动机进气真空度有关的表。

对于有回油系统,由于油轨内燃油的压力随发动机进气真空度的变化而变化,保证喷嘴喷孔两端的压力是恒定的,所以任何发动机进气真空度下BPC保持不变。

2.MAP(进气歧管绝对压力,ManifoldAbsolutePressure)

MAP是通过安装在进气管上的MAP传感器直接读取的。

3.充气温度(ChargeTemperature)

充气温度指的是进入发动机汽缸内气体的温度。

充气温度可以通过水温和进气温度计

算获得。

充气温度=水温+K×(水温-进气温度),其中水温和进气温度可以通过传感器直接获得,K是一个与进气流量相关的常数,可以通过试验获得。

说明:

充气温度的计算是以摄氏温度为单位,但系统软件在使用此温度前会将其转化为绝对温度。

注意:

K值与水温和进气温度传感器的安装位置密切相关,所以任何这两个传感器位置的改动都将引起充气温度计算的误差而造成各项修正的不准确。

4.VE(充气效率,VolumetricEfficiency)

充气效率是实际进入汽缸内的空气流量与根据理想状态方程推算的空气流量的比值。

在本系统中有两种VE表达形式,即基于TPS(节气门位置)的VE和非基于TPS的VE。

注意:

VE是与发动机的整个进排气系统(包括从空气滤清器到消声器)密切相关的,所以任何进排气系统的改变都会引起VE的变化。

5.BLM(块学习修正,BlockLearnMemory)

BLM是用来修正因发动机运转时间的增长而造成的缓慢变化和发动机及整车的生产散差。

BLM可以被理解为充气效率的修正。

BLM的值将被存储在非易失存储器内,只要电瓶不断电,每次的BLM值就会被一直保持。

BLM的中心值为128。

BLM逻辑根据发动机的不同工况分成22个单元,其中16个节气门部分开度单元,2个减速单元以及4个怠速单元,在每一个单元内使用一个BLM值。

6.空燃比(A/F,AirFuelRatio)

1)启动空燃比

a)正常启动空燃比(NormalCrankA/F)

正常启动空燃比是一个与水温相关的二维表。

典型节点的空燃比如下:

A/F

A/F

A/F

-40

2.8

-4

4.5

8

8

20

10

80

13

116

11

b)清除淹缸空燃比:

KAFCF=错误!

链接无效。

进入清淹模式的条件:

♦发动机没有运转

♦没有TPS与电源短路的故障码存在于非易失存储器

♦节气门位置大于KAFCFTA=错误!

链接无效。

%

2)发动机运转时空燃比(RunningA/F)

a)冷机状态空燃比(ColdEngineA/F)

为了整车驾驶性的需要,在发动机冷机状态下应该使用较浓的空燃比。

因此本系统有一专门的空燃比的表用于冷机状态。

当启动时水温低于错误!

链接无效。

?

C时,一直使用冷机状态空燃比,直到水温高于错误!

链接无效。

?

C时并持续错误!

链接无效。

秒后,停止用冷机状态空燃比并开始使用暖机状态空燃比。

b)暖机状态空燃比(WarmEngineA/F)

当发动机处于暖机状态时,可以采用较稀的空燃比并不会影响驾驶性且有利于催化器的起燃。

当启动时的水温高于错误!

链接无效。

?

C时,使用暖机状态空燃比。

当水温高于错误!

链接无效。

?

C时开始使用理论空燃比。

c)理论空燃比(StoichiometricA/F)

当发动机已经充分暖机后,开始使用理论空燃比14.6:

1

d)功率加浓空燃比(PowerEnrichmentA/F)

当发动机工作在很大负荷下时使用较浓的功率加浓空燃比,这有两方面的功能:

♦获得更大的功率和扭矩

♦降低排温和催化器温度

e)催化器过热保护空燃比(ConverterProtectionA/F)

本系统可以实时预测当前催化器的温度,当催化器温度超过设定温度时,开始使用催化器较浓的过热保护空燃比。

催化器过热保护空燃比与当前的空燃比进行比较,使用较浓的空燃比

f)发动机过热保护空燃比(EngineOverheatedA/F)

当水温高于错误!

链接无效。

?

C时,使用发动机过热保护空燃比错误!

链接无效。

7.电瓶电压修正(BatteryCorrection)

当电瓶电压低于一定数值时,油泵将不能保证系统的油压。

为了保证喷射正确的燃油量,本系统有电瓶电压修正

8.闭环反馈修正(CLCORR,CloseLoopCorrection)

闭环反馈修正的功能就是通过氧传感器的反馈信号控制实际的空燃比在理论空燃比附近。

控制逻辑为利用闭环积分修正控制实际空燃比在理论空燃比附近,利用闭环比例反馈控制使空燃比振荡在理论空燃比附近。

9.减速断油(DFCO,DecelerationFuelCutOff)

进入减速断油的条件:

1)发动机运转中

2)发动机启动时的水温大于错误!

链接无效。

?

C,或发动机运转时间大于等于错误!

链接无效。

3)节气门位置小于错误!

链接无效。

%(如果检测到TPS的故障码则忽略此条件)

4)TPS高,TPS低,MAP高,MAP低的故障不同时存在,如果还未进入DFCO,“高原相

关MAP”<门槛值。

如果已经进入DFCO,“高原相关MAP”<门槛值+偏移量。

“高原相关MAP”是将实际的MAP转换成的一个与大气压相关的量,保证无论大气压如何变化“高原相关MAP”在发动机未启动前始终保持101.3Kpa并随MAP的变化而变化。

门槛值是一个与水温和空调开启状态相关的值,在热车状态下,如果空调未开启,

门槛值=F67MNAC(Kpa)错误!

链接无效。

如果空调开启,门槛值=F67MWAC(Kpa),错误!

链接无效。

偏移量=错误!

链接无效。

KPa。

如果有MAP传感器故障码存在,则忽略此条件。

5)如果还未进入DFCO,车速大于错误!

链接无效。

kph,如果已经进入DFCO,车速错误!

链接无效。

kph。

(如果车速传感器故障存在则忽略此条件)

发动机转速>门槛值+偏移量,门槛值是一个与水温相关的值,在热车状态下,门槛值=F67(单位:

rpm)。

错误!

链接无效。

如果未进入DFCO,偏移量=错误!

链接无效。

rpm。

如果已经进入DFCO,

偏移量=0RPM。

7)没有判断出离合器分离信号。

8)如果因为离合器分离而退出DFCO,需要延时错误!

链接无效。

秒。

如果以上条件全部满足,经过一个与发动机转速相关的的延时FDFCODLY(单位:

秒)错误!

链接无效。

后进入DFCO。

任何一个条件不满足,都将退出DFCO。

10.减速减稀(DE,DecelerationEnleanment)

1)MAP减稀(MAPDE)

当TPS小于滤波以后的TPS,且MAP小于滤波以后的MAP并且差值大于门槛值时进入MAP减稀。

2)TPS减稀(TPSDE)

当TPS小于滤波以后的TPS并且差值大于门槛值时进入TPS减稀

11.加速加浓(AE,AccelerationEnrichment)

1)IAC加浓(IACAE)

发动机正在运转,步进马达的移动未其它功能被禁止,并且250毫秒以内的通过步进马达的空气量变化大于门槛值错误!

链接无效。

%,则进入IAC加浓。

2)MAP加浓(MAPAE)

发动机在运转,且MAP大于滤波以后的MAP并且差值大于门槛值时进入MAP加浓。

3)TPS加浓(TPSAE)

每7.81ms计算的TPS变化量大于或等于错误!

链接无效。

%时,进入TPS加浓,加浓量取决于TPS的变化量,发动机转速和水温等。

12.保护性断油(FuelCutOff)

以下条件任何一个满足,系统将停止喷油。

1)当发动机转速高于错误!

链接无效。

rpm时断油,当发动机转速低于错误!

链接无效。

rpm时恢复供油

2)当系统检测到点火系统故障时断油

3)当系统电压大于等于错误!

链接无效。

V且发动机转速大于等于错误!

链接无效。

rpm时断油,当系统电压低于错误!

链接无效。

V-错误!

链接无效。

V时恢复供油

三、油泵逻辑(FuelPumpLogic)

1.油泵开逻辑(FuelPumpOn)

点火开关打开后,油泵将运转错误!

链接无效。

秒,如果没有检测到有效的58X信号,油泵停止运转。

发动机开始转动,即至少检测到2个有效的58X信号后,油泵开始运转。

2.油泵关逻辑(FuelPumpOff)

失去转速信号后错误!

链接无效。

秒或防盗器要求关闭油泵,油泵停止运转

第四章点火系统

一、线圈充磁控制

点火线圈充磁时间决定了火花塞的点火能量。

太长的充磁时间会损害线圈或线圈驱动器,太短会导致失火。

下表是一个DELPHI点火线圈充磁时间表。

(单位:

?

s)

错误!

链接无效。

二、起动模式

在起动模式下,由F1CRK表(单位:

?

)给出一个固定的点火角。

错误!

链接无效。

起动模式下的点火角应该保证缸内混合气被点燃,并且要提供正扭矩。

发动机转速上升并且能够自行运转(转速>错误!

链接无效。

rpm)后,点火角应尽快退出起动模式。

三、正常运转模式

点火角=主点火角

+水温修正

+进气温修正

+海拔高度补偿

+怠速修正

+RDSC和Tip-in修正

+功率加浓修正

+DFCO修正

+空调关闭修正

+LEGR修正(如果采用LEGR)

1.热机主点火角

热机模式下,通常节气门开启的主点火角就是最小点火角最佳扭矩点(MBT)或爆震临界点(KBL)。

点火角标定时使用的燃油标号应由客户确认。

系统采用了有爆震传感器时,可以略为加大KBL点火角。

节气门关闭时,点火角应该小于MBT点以获得怠速稳定性

主点火角表:

节气门关闭F1C(单位:

?

节气门开启F1(单位:

?

)或F_HIGHOCTANE(单位:

?

节气门关闭:

主点火角=主点火角、F1C两者最小值

节气门开启:

主点火角=F1或F_HIGHOCTANE

错误!

链接无效。

错误!

链接无效。

怠速基本点火角表F1C通常是经验性地得出的。

在某个发动机转速下,调节点火角直到MAP最小,这时的点火角就是MBT点火角。

在此基础上减去5~8?

就得到基本点火角。

发动机转速和负荷不同,减去的点火角就不同。

节气门开启主点火角表F1或F_HIGHOCTANE通常在发动机台架上标定得出。

在充分热机的条件下(环境温度?

20?

?

C)使用规定标号燃油,在去掉其它点火角修正项的情况下,得出的MBT或KBL点火角即是F1或F_HIGHOCTANE点火角。

为了检测由产品不一致性对KBL的影响,应该在几台发动机上在相同的环境条件下使用同一燃油测试KBL点火角。

在低MAP条件下,F1或F_HIGHOCTANE表可以采用小于MBT的点火角,这样在进入减速断油(DFCO)或行车怠速时,可以获得平稳的过渡。

在各缸空燃比不均匀问题比较严重并且采用了爆震传感器时,可以采用大于KBL的点火角。

通过爆震控制,各缸可以用各自的KBL点火角工作以获得最大化的扭矩。

2.催化器加热主点火角

该主点火角的目的是在不影响冷态驾驶性的前提下,让催化器尽可能快地起燃。

在加热催化器过程中,基本点火角可以不是MBT或KBL点火角,而且在不影响驾驶性的情况下应该尽可能地延迟。

催化器加热主点火角表

节气门关闭

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 法律文书 > 调解书

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2