三相步进电机驱动器设计毕业设计论文Word文档格式.docx

上传人:b****3 文档编号:6757580 上传时间:2023-05-07 格式:DOCX 页数:33 大小:403.11KB
下载 相关 举报
三相步进电机驱动器设计毕业设计论文Word文档格式.docx_第1页
第1页 / 共33页
三相步进电机驱动器设计毕业设计论文Word文档格式.docx_第2页
第2页 / 共33页
三相步进电机驱动器设计毕业设计论文Word文档格式.docx_第3页
第3页 / 共33页
三相步进电机驱动器设计毕业设计论文Word文档格式.docx_第4页
第4页 / 共33页
三相步进电机驱动器设计毕业设计论文Word文档格式.docx_第5页
第5页 / 共33页
三相步进电机驱动器设计毕业设计论文Word文档格式.docx_第6页
第6页 / 共33页
三相步进电机驱动器设计毕业设计论文Word文档格式.docx_第7页
第7页 / 共33页
三相步进电机驱动器设计毕业设计论文Word文档格式.docx_第8页
第8页 / 共33页
三相步进电机驱动器设计毕业设计论文Word文档格式.docx_第9页
第9页 / 共33页
三相步进电机驱动器设计毕业设计论文Word文档格式.docx_第10页
第10页 / 共33页
三相步进电机驱动器设计毕业设计论文Word文档格式.docx_第11页
第11页 / 共33页
三相步进电机驱动器设计毕业设计论文Word文档格式.docx_第12页
第12页 / 共33页
三相步进电机驱动器设计毕业设计论文Word文档格式.docx_第13页
第13页 / 共33页
三相步进电机驱动器设计毕业设计论文Word文档格式.docx_第14页
第14页 / 共33页
三相步进电机驱动器设计毕业设计论文Word文档格式.docx_第15页
第15页 / 共33页
三相步进电机驱动器设计毕业设计论文Word文档格式.docx_第16页
第16页 / 共33页
三相步进电机驱动器设计毕业设计论文Word文档格式.docx_第17页
第17页 / 共33页
三相步进电机驱动器设计毕业设计论文Word文档格式.docx_第18页
第18页 / 共33页
三相步进电机驱动器设计毕业设计论文Word文档格式.docx_第19页
第19页 / 共33页
三相步进电机驱动器设计毕业设计论文Word文档格式.docx_第20页
第20页 / 共33页
亲,该文档总共33页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

三相步进电机驱动器设计毕业设计论文Word文档格式.docx

《三相步进电机驱动器设计毕业设计论文Word文档格式.docx》由会员分享,可在线阅读,更多相关《三相步进电机驱动器设计毕业设计论文Word文档格式.docx(33页珍藏版)》请在冰点文库上搜索。

三相步进电机驱动器设计毕业设计论文Word文档格式.docx

步进电机每转一周的步数相同,在不丢步的情况下运行,其步距误差不会长期积累。

在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,同时步进电机只有周期性的误差而无累积误差,精度高,步进电动机可以在宽广的频率范围内通过改变脉冲频率来实现调速、快速起停、正反转控制等,这是步进电动机最突出的优点。

正是由于步进电机具有突出的优点,广泛应用在各种自动化控制系统中。

随着微电子和计算机技术的发展,步进电机的需求量与日俱增,在各个国民经济领域都有应用。

比如在数控系统中就得到广泛的应用。

目前世界各国都在大力发展数控技术,我国的数控系统也取得了很大的发展,我国已经能够自行研制开发适合我国数控机床发展需要的各种档次的数控系统。

近年来由于微型计算机方面的快速发展,使步进电机的控制发生了革命性变革。

优点明显的步进电机被广泛应用在电子计算机的许多外围设备中,例如打印机,纸带输送机构,卡片阅读机,主动轮驱动机构和存储器存取机构等,步进电机也在军用仪器,通信和雷达设备,摄影系统,光电组合装置,阀门控制,数控机床,电子钟,医疗设备及自动绘图仪,数字控制系统,工具机控制,程序控制系统以及许多航天工业的系统中得到应用。

因而,对于步进电机控制的研究也就显得尤为重要了。

为了得到良好的控制性能,对步进电机的控制的研究就一直没有停止过,许多重大的技术得以实现。

上世纪80年代以后,由于微型计算机以多功能的姿态出现,步进电动机的控制方式变得更加灵活多样。

原来的步进电机控制系统采用分立元件的控制回路,或者集成电路,不仅调试安装复杂,要消耗大量元器件,而且一旦定型之后,要改变控制方案就一定要重新设计电路,不利于系统的改进升级。

基于微型单片机的控制系统则通过软件来控制步进电机,能够更好地发挥步进电机的潜力。

因此,用微型单片机控制步进电机己经成为了一种必然的趋势,也符合数字化的时代发展要求。

还比如为了适应一些领域中高精度定位和运行平稳性的要求,出现的步进电机细分驱动技术,就包括振荡器、环行分配器控制的细分驱动、基于单片机斩波恒流驱动、基于单片机的直流电压驱动三种常见驱动方式,除上述三种步进电机的驱动方案之外,目前报道的驱动方案还有根据汇编语言或C语言进行软件开发,通过串行或并行通行的方式实现pc机与步进电机控制器之间的数据通信,最终实现由PC机直接控制步进电机的方法。

但是在有些应用场合,并不需要高精度的控制,而是需要在满足一般工作要求的情况下,尽量使控制系统做到:

系统硬件结构简单,成本低;

功能较为齐全;

适应性强;

电机各种运行状态指示一目了然,操作方便;

系统抗干扰能力强,可靠性高等要求。

本论文就是采用这个思路进行设计。

一般步进电机控制器都用硬件实现,虽然电路可以做到了高集成度,可价格较贵,功能相对较单一,并且设计要求有所改变,就得改变整个硬件电路,比较麻烦。

而采用单片机的软件和硬件结合进行控制,运用其强大的可编程和运算功能,充分利用单片机的各种资源,能灵活的对步进电机进行控制,实现其不同模式、步数、正反转、转速等控制,如果需改变控制要求,一般只需改变软件就能适应新的环境,并且在本设计中利用动态扫描技术,把显示电路和键盘电路有机的结合起来,能做到一定的人机交换,而且为了抗干扰,提高可靠性,具有一定的应用价值。

第2章步进电机工作原理

由于步进电机是一种将电脉冲信号转换成直线或角位移的执行元件,它不能直接接到交直流电源上,而必须使用专业设备----步进电机控制驱动器,典型步进电机控制系统:

控制器可以发出脉冲频率从几赫兹到几千赫兹可以连续变化的脉冲信号,它为环形分配器提供脉冲序列,环形分配器的主要功能是把来自控制环节的脉冲序列按一定的规律分配后,经过功率放大器的放大加到步进电机驱动电源的各项输入端,以驱动步进电机的转动,环形分配器主要有两大类:

一类是用计算机软件设计的方法实现环形分配器要求的功能,通常称软环形分配器。

另一类是用硬件构成的环形分配器,通常称硬环形分配器。

功率放大器主要对环形分配器的较小输出信号进行放大,以达到驱动步进电机的目的,步进电机的基本控制包括转向控制和速度控制两个方面。

从结构上看,步进电机分为三相单三拍、三相双三拍和三相六拍3种,其基本原理如下:

2.1三相步进电机控制工作原理

2.1.1步进电机的工作原理

图1步进电机三相接线图

如图1所示,U1、V1、W1接电源,分别有三个开关控制,U2、V2、W2分别接地。

如果给处于错齿状态的相通电,则转子在电磁力的作用下,将向磁导率最大(即最小磁阻位置)位置转动,即向趋于对齿的状态转动。

2.1.2步进电机的工作方式

三相步进电机可以在三相单拍,三相双拍和三相六拍三种工作过方式下工作。

在三相单三拍工作方式运行时,通电顺序为:

A-B-C-A;

三相双三拍工作方式运行时,通电顺序为:

AB-BC-CA-AB;

三相六拍工作方式运行时,通电顺序为:

A-AB-B-BC-C-CA-A,因此要输出相应的控制字进行控制。

2.1.3步进电机的转向控制

如果给定工作方式正序换相通电,步进电机正转。

若步进电机的励磁方式为三相六拍,即A-AB-B-BC-C-CA。

如果按反序通电换相,即则电机就反转。

其他方式情况类似。

2.1.4步进电机的启停控制

步进电机由于其电气特性,运转时会有步进感,即振动感。

为了使电机转动平滑,减小振动,可在步进电机控

制脉冲的上升沿和下降沿采用细分的梯形波,可以减小步进电机的步进角,提高电机运行的平稳性。

在步进电机停转时,为了防止因惯性而使电机轴产

生顺滑,则需采用合适的锁定波形,产生锁定磁力矩,锁定步进电机的转轴,使步进电机的转轴不能自由转动。

2.1.5步进电机的速度控制

步进电动机运转的速度是由输入到A、B、C三相绕组的频率所决定的。

脉冲的频率越高,电动机运转的速度越快,否则,速度就越慢。

因而通过延时程序控制输出脉冲的频率,就可以实现对步进电机速度的控制。

2.2步进电机的驱动控制技术

在混合式步进电动机特点和工作原理的基础上,本章就步进电动机的驱动控制技术进行了详细的分析和比较。

首先介绍了传统的驱动方式:

单电压驱动(包括单电压串电阻驱动)、双电压驱动(包括高低压驱动)和恒流斩波驱动的工作原理及优缺点,然后重点介绍了细分驱动方式的原理及其模型。

2.2.1一般驱动系统的组成结构

步进电动机不像直流电动机、交流电动机一样,它不能直接接到交直流电源上工作,而必须使用专用设备——步进电动机驱动器。

步进电动机驱动器系统的性能,除与电动机木身的性能有关外,也在很大程度上取决于驱动器的优劣。

因此,对步进电动机驱动器的研究几乎是对步进电动机的研究同步进行的。

步进电动机驱动器的主要构成如图2.1所示,一般由环形分配器、信号处理级、推动级、驱动级等各部分组成,用于功率步进电动机的驱动器还需要有多种保护电路。

环形分配器用来接受来自控制器的CP脉冲,并按步进电动机状态转换表要求的状态顺序产生各相导通或截止的信号。

每来一个CP脉冲,环形分配器的输出转换一次。

同时,环形分配器还必须接受控制器的方向信号,从而决定其输出的状态转换是按正序或者反序转换,决定了步进电动机的转向。

因此,步进电动机转速的高低、升速或降速、起动或停止都完全取决于CP脉冲的有无或频率的高低。

信号放大与处理的作用是将环分输出信号加以放大,变成足够大的信号送入推动级。

信号处理是实现某些转换、合成等功能,产生斩波、抑制等特殊功能的信号,从而产生特殊功能的驱动。

本级还经常与各种保护电路、各种控制电路组合在一起,形成较高性能的驱动输出。

推动级的作用是将较小的信号加以放大,变成足以推动驱动级的较大的信号。

有时推动级还承担电平转换的作用。

保护级的作用是保护驱动级的安全。

一般可根据需要设置过电流保护、过热保护、过压保护、欠压保护等。

2.2.2驱动器的特点

为使步进电动机满足各种需要的输出,驱动级必须对电动机绕组提供足够的电压和电流,但步进电动机与一般电子设备的驱动有很多不同点,其主要表现在:

1.各相绕组都是开关工作,多数电动机绕组都是连续的交流或直流,而步进电动机各相绕组都是脉冲式供电,所以绕组电流不是连续的。

2.电动机各相绕组都是绕在铁心上的线圈,所以都有较大的电感。

绕组通电时电流上升率受到限制,因此影响电动机绕组电流的大小。

3.绕组断点时,电感中磁场的储能将维持绕组中已有的电流不能突变,结果使应该电流截止的相不能立即截止。

为使电流尽快截止,必须设计适当的续流回落。

绕组导通和截止都会产生较大的反电势,而截止时反电势将对驱动级器件的安全产生有害的影响。

4.电动机运转时在各相绕组中产生旋转电势,这些电势的大小和方向将对绕组电流产生很大的影响。

由于旋转电势基本上与电动机转速成正比,转速越高,电势越大,绕组电流越小,从而使电机输出转矩也随着转速升高而下降。

驱动级线路,既要保证绕组有足够的电流电压及正确的波形,同时要保证功率放大器件的安全运行,另外,还应有较高的效率、较小的功耗、较低的成本。

这就必须要设计合理的线路,选用合适的功率器件。

驱动级的功率放大器件有中功率晶体管、大功率晶体管、大功率达林顿晶体管、可控硅、可关断可控硅、场效应功率管、双极型晶体管与场效应功率管的复合管以及各种功率模块等。

目前步进电机常用的驱动方式有单电压驱动(包括单电压串电阻驱动)、双电压驱动(包括高低压驱动)、斩波恒流驱动和细分驱动等。

以下分别简单介绍前二种驱动方式的工作原理和优缺点。

将在后面详细介绍细分驱动方式。

2.3步进电动机驱动技术分析

2.3.1单电压驱动

单电压驱动是指在电动机绕组工作过程中,只用一个方向电压对绕组供电。

其原理图如图2.2所示,前面推动级输出信号In作用于三极管的基级,其集电极接电动机的一相绕组,绕组另一端直接与电源电压连接。

因此,当三极管导通时,电源电压全部作用在电动机绕组上。

归结起来,单电压驱动器有如下特点:

线路简单,成本低,低频时响应较好;

有共振区,高频时,带载能力迅速下降。

单电压驱动的致命弱点是绕组导通的回路电气时间常数

较大,致使导通时绕组电流上升较慢、使电机在导通脉宽T接近

时绕组电流迅速下降。

由于

,故要减小电气时间常数

的方法是减小绕组的电感

或增加绕组回路的电阻R。

对于确定的步进电动机,绕组电感已经确定。

因此在电路中只有用增加回路电阻的方法。

即单电压串电阻驱动,其原理图如图2.3所示。

单电压串电阻驱动的主要缺点是损耗大,效率低。

对比前述单电压驱动,其导通时铜损为

,而串电阻后的导通铜损为

,所以电源提供的功率大部分都消耗在串联电阻上。

2.3.2双电压驱动

双电压驱动的基本思想是在较低频段用较低的电压驱动,而在高频段用较高电压驱动,原理线路见图2.4所示。

电源直接接到由大功率管

和二极管

组成的电源转换开关上。

关断时,低压电源

通过

给电路提供驱动电压,当

导通时,高压电源

给电路提供驱动电压,

处于反向截止状态,低压电源自动停止供电。

高低压驱动的原理线路如图2.5所示,初看起来,与双电压驱动电路似乎差别不大,但实际上工作过程截然不同。

图中所示为每相的单元线路。

主回路由高压管

、电动机绕组、低压管

串联而成。

加高压,

加低电压,电动机绕组回路不串电阻。

在每相导通期间,低压管输入信号

与高压管输入信号

见图2.6所示。

为高电平时,该相导通;

为低电平时,该相截止。

高压管的输入信号

是由

信号的前沿信号获得的,

前沿与

同步。

但脉冲宽度要比

小得多,高低压驱动可保证在很宽的频段内都能保证相绕组有较大的平均电流,在截止时又能迅速释放,因此能产生较大的且较稳定的电磁转矩,因此驱动系统可得到较高的响应。

第三章.步进电机系统硬件设计

本设计的硬件电路只要包括控制电路、单片机最小系统、驱动电路、显示电路四大部分。

最小系统只要是为了使单片机正常工作。

控制电路只要由开关和按键组成,由操作者根据相应的工作需要进行操作。

显示电路主要是为了显示电机的工作状态和转速。

驱动电路主要是对单片机输出的脉冲进行功率放大,从而驱动电机转动。

系统总体设计方框图如图4-1所示

从该系统的设计要求可知,该系统的输入量为速度和方向,速度应该有增减变化,通常用加减按钮控制速度,这样只要2根口线,再加上一根方向线盒一根启动信号线共需要4根输入线。

系统的输出线与步进电机的绕组数有关。

这里选进电机,该电机共有四相绕组,工作电压为+5V,可以个单片机共用一个电源。

步进电机的四相绕组用P1口的P1.0~P1.3控制,由于P1口驱动能力不够,因而用一片2803增加驱动能力。

用P0口控制第一数码管用于显示正反转,用P2口控制第二个数码管用于显示转速等级。

数码管采用共阳的。

3.1单片机最小系统

单片机最小系统或者称为最小应用系统,素质用最少的元件组成的单片机可以工作的系统,对51系列单片机来说,最小系统一般应该包括:

单片机、复位电路、晶振电路。

本设计采样Atmel公司生产的89C52单片机是一种低功耗/低电压‘高性能的8位单片机,它采用CMOS和高密度非易失性存储技术,而且其输出引脚和指令系统都与MCS-51兼容;

片内的FlashROM允许在系统内改编程序或用常规的非易失性编程器来编程,内部除CPU外,还包括256字节RAM,4个8位并行I/O口,5个中断源,2个中断优先级,2个16位可编程定时计数器,89C52单片机是一种功能强、灵活性高且价格合理的单片机,完全满足本系统设计需要。

复位电路:

使用了独立式键盘,单片机的P1口键盘的接口。

该设计要求只需4个键对步进电机的状态进行控制,但考虑到对控制功能的扩展,使用了6路独立式键盘。

复位电路采用手动复位,所谓手动复位,是指通过接通一按钮开关,使单片机进入复位状态,晶振电路用30PF的电容和一12M晶体振荡器组成为整个电路提供时钟频率。

晶振电路:

8051单片机的时钟信号通常用两种电路形式电路得到:

内部震荡方式和外部中断方式。

在引脚XTAL1和XTAL2外部接晶振电路器(简称晶振)或陶瓷晶振器,就构成了内部晶振方式。

由于单片机内部有一个高增益反相放大器,当外接晶振后,就构成了自激振荡器并产生振荡时钟脉冲。

内部振荡方式的外部电路如图5示。

其电容值一般在5~30pf,晶振频率的典型值为12MHz,采用6MHz的情况也比较多。

内部振荡方式所得的时钟信号比较稳定,实用电路实用较多。

图4.1-1单片机最小系统原理图

3.2步进电机驱动电路

步进电机是数字控制电机,它将脉冲信号转变成角位移,即给一个脉冲信号,步进电机就转动一个角度,因此非常适合于单片机控制。

步进电机区别于其他控制电机的最大特点是:

它是通过输入脉冲信号来进行控制的,即电机的总转动角度由输入脉冲数决定,而电机的转速由脉冲信号频率决定。

步进电机分三种:

永磁式(PM),反应式(VR)和混合式(HB),步进电机又称为脉冲电机,是工业过程控制和仪表中一种能够快速启动,反转和制动的执行元件,其功用是将电脉冲转换为相应的角位移或直线位移,由于开环下就能实现精确定位的特点,使其在工业控制领域获得了广泛应用。

步进电机的运转是由电脉冲信号控制的,其角位移量或线位移量与脉冲数成正比,每个一个脉冲,步进电机就转动一个角度(不距角)或前进、倒退一步。

步进电机旋转的角度由输入的电脉冲数确定,所以,也有人称步进电机为数字/角度转换器。

ULN是集成达林顿管IC,内部还集成了一个消线圈反电动势的二极管,可用来驱动继电器。

它是双列16脚封装,NPN晶体管矩阵,最大驱动电压=50V,电流=500mA,输入电压=5V,适用于TTLCOMS,由达林顿管组成驱动电路。

ULN是集成达林顿管IC,内部还集成了一个消线圈反电动势的二极管,它的输出端允许通过电流为200mA,饱和压降VCE约1V左右,耐压BVCEO约为36V。

用户输出口的外接负载可根据以上参数估算。

采用集电极开路输出,输出电流大,故可直接驱动继电器或固体继电器,也可直接驱动低压灯泡。

ULN2003的作用:

ULN2003是大电流驱动阵列,多用于单片机、智能仪表、PLC、数字量输出卡等控制电路中。

可直接驱动继电器等负载。

输入5VTTL电平,输出可达500mA/50V。

ULN2003是高耐压、大电流达林顿陈列,由七个硅NPN达林顿管组成。

ULN2003的每一对达林顿都串联一个2.7K的基极电阻,在5V的工作电压下它能与TTL和CMOS电路直接相连,可以直接处理原先需要标准逻辑缓冲器。

ULN2003是高压大电流达林顿晶体管阵列系列产品,具有电流增益高、工作电压高、温度范围宽、带负载能力强等特点,适应于各类要求高速大功率驱动的系统。

ULN2003A引脚图及功能如图4.2-1所示。

图3.2-1ULN2003A引脚图

ULN2003是高耐压、大电流、内部由七个硅NPN达林顿管组成的驱动芯片。

经常在以下电路中使用,作为显示驱动、继电器驱动、照明灯驱动、电磁阀驱动、伺服电机、步进电机驱动等电路中。

ULN2003的每一对达林顿都串联一个2.7K的基极电阻,在5V的工作电压下它能与TTL和CMOS电路直接相连,可以直接处理原先需要标准逻辑缓冲器来处理的数据。

ULN2003工作电压高,工作电流大,灌电流可达500mA,并且能够在关态时承受50V的电压,输出还可以在高负载电流并行运行。

ULN2003的封装采用DIP—16或SOP—16。

ULN2003可以驱动7个继电器,具有高电压输出特性,并带有共阴极的续流二极管使器件可用于开关型感性负载。

每对达林顿管的额定集电极电流是500mA,达林顿对管还可并联使用以达到更高的输出电流能力。

通常单片机驱动ULN2003时,上拉2K的电阻较为合适,同时,COM引脚应该悬空或接电源。

ULN2003是一个非门电路,包含7个单元,但独每个单元驱动电流最大可达350mA.资料的最后有引用电路,9脚可以悬空。

比如1脚输入,16脚输出,你的负载接在VCC与16脚之间,不用9脚,步进电机驱动电路如图4.2-2所示。

图4.2-2步进电机驱动电路

4.3显示电路

在该步进电机的控制器中,电机可以正反转,可以加速、减速,其中电机转速的等级分为七级,为了方便知道电机的运行状态和电机的转速的等级,这里设计了电机转速和电机的工作状态的显示电路。

图4.3-1显示电路

4.4按键电路

本系统通4个按键加上拉电阻构成系统的按键输入电路,按键电路原理图如图4.4-1所示。

图4.4-1按键电路电路原理图

4 系统的软件实现

本系统的软件设计主要分为系统初始化、延时子程序、按键响应程序,子程序及控制脉冲输出几部分,事实上每一部分都是紧密相关的,每个功能模块对于整体设计都是非常重要,单片机AT89C52通过软件编程才能使系统真正的运行起来,软件设计的好坏也直接决定了系统的运行质量。

程序流程图的设计遵循自顶向下的原则,即从主体遂逐步细分到每一个模块的流程。

在流程图中把设计者的控制过程梳理清楚。

具体程序的讲解将在本章各节做详细讲解。

4.1 系统软件主流程图

系统分为电机正转、电机反转、电机加速与电机减速的几部分组成,其主程序框图如图4-1所示。

·

图4-1主程序框图

4.2查键部分

查键程序用于判断P0.0口与P0.1口的值,当p0.0口为0时,电机正转,当p0.0口为1时,继续判断p0.1口的值,p0.1口为0时,电机反转。

如图4-2所示。

图4-2查键部分流程图

4.3前进部分

系统初始化之后,前进子程序R0用于给P2口送不同的值,根据电机转动的相序,使电机正向转动,P2口的值分别为01H,03H,02H,06H,04H,0CH,08H,09H。

流程图如图4-3所示。

图4-3前进部分流程图

4.4后退部分

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 法律文书 > 调解书

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2