Sepic电路课程设计说明书Word格式文档下载.doc

上传人:wj 文档编号:6941829 上传时间:2023-05-07 格式:DOC 页数:34 大小:1.56MB
下载 相关 举报
Sepic电路课程设计说明书Word格式文档下载.doc_第1页
第1页 / 共34页
Sepic电路课程设计说明书Word格式文档下载.doc_第2页
第2页 / 共34页
Sepic电路课程设计说明书Word格式文档下载.doc_第3页
第3页 / 共34页
Sepic电路课程设计说明书Word格式文档下载.doc_第4页
第4页 / 共34页
Sepic电路课程设计说明书Word格式文档下载.doc_第5页
第5页 / 共34页
Sepic电路课程设计说明书Word格式文档下载.doc_第6页
第6页 / 共34页
Sepic电路课程设计说明书Word格式文档下载.doc_第7页
第7页 / 共34页
Sepic电路课程设计说明书Word格式文档下载.doc_第8页
第8页 / 共34页
Sepic电路课程设计说明书Word格式文档下载.doc_第9页
第9页 / 共34页
Sepic电路课程设计说明书Word格式文档下载.doc_第10页
第10页 / 共34页
Sepic电路课程设计说明书Word格式文档下载.doc_第11页
第11页 / 共34页
Sepic电路课程设计说明书Word格式文档下载.doc_第12页
第12页 / 共34页
Sepic电路课程设计说明书Word格式文档下载.doc_第13页
第13页 / 共34页
Sepic电路课程设计说明书Word格式文档下载.doc_第14页
第14页 / 共34页
Sepic电路课程设计说明书Word格式文档下载.doc_第15页
第15页 / 共34页
Sepic电路课程设计说明书Word格式文档下载.doc_第16页
第16页 / 共34页
Sepic电路课程设计说明书Word格式文档下载.doc_第17页
第17页 / 共34页
Sepic电路课程设计说明书Word格式文档下载.doc_第18页
第18页 / 共34页
Sepic电路课程设计说明书Word格式文档下载.doc_第19页
第19页 / 共34页
Sepic电路课程设计说明书Word格式文档下载.doc_第20页
第20页 / 共34页
亲,该文档总共34页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

Sepic电路课程设计说明书Word格式文档下载.doc

《Sepic电路课程设计说明书Word格式文档下载.doc》由会员分享,可在线阅读,更多相关《Sepic电路课程设计说明书Word格式文档下载.doc(34页珍藏版)》请在冰点文库上搜索。

Sepic电路课程设计说明书Word格式文档下载.doc

3控制策略的设定 11

4Matlab编程仿真 12

4.1根据状态方程编写Matlab子程序 12

4.2求解算法的基本思路 13

4.3Matlab求解Sepic电路主程序 15

5通过分析仿真结果合理选取电路参数L1,L2,C1,C2 18

5.1参数L1的确定 18

5.2参数L2的确定 20

5.3参数C1的确定 21

5.4参数C2的确定 22

5.5采用校核后的参数仿真 24

6采用Matlab分析Sepic斩波电路的性能 24

6.1计算电感L2的电流IL2出现断续的次数 24

6.2纹波系数的计算 25

6.3电压调整率 25

6.4负载调整率 26

6.5电路的扰动分析 27

7参考文献 30

华南理工大学电力学院课程设计说明书

1Sepic电路分析

1.1Sepic电路简介

Sepic斩波电路是开关电源六种基本DC/DC变换拓扑之一,是一种允许输出电压大于、小于或者等于输入电压的DC/DC斩波电路。

其输出电压由主控开关(三极管或MOS管)的占空比控制。

SEPIC变换器是一种四阶非线性系统,因具有可升降压、同极性输出、输入电流脉动小、输出易于扩展等特点,而广泛应用于升降压型直流变换电路和功率因数校正电路。

这种电路最大的好处是输入输出同极性。

尤其适合于电池供电的应用场合,允许电池电压高于或者小于所需要的输入电压。

比如一块锂电池的电压为3V~4.2V,如果负载需要3.3V,那么Sepic电路可以实现这种转换。

另外一个好处是输入输出的隔离,通过主回路上的电容C1实现。

同时具备完全关断功能,当开关管关闭时,输出电压为0V。

1.2原理分析

Sepic斩波电路的原理图如图1所示。

由可控开关Q、储能电感L1、L2二极管D、储能电容C1、滤波电容C2、负载电阻R和控制电路等组成。

图1、Sepic斩波电路的原理图

Sepic斩波电路的基本工作原理是:

当开关管Q受控制电路的脉冲信号触发而导通时,V1—L1—Q回路C1—Q—L2回路同时导通,L1和L2储能。

V处于断态时,V1—L1—C1—D—负载(C2和R)回路及L2—D—负载回路同时导通,此阶段V1和L1既向负载供电,同时也向C1充电,C1储存的能量在Q处于通态时向L2转移。

Sepic斩波电路的输入输出关系由下式给出:

(1)

图2、SPEIC的开关波形(VQ1∶Q1漏源电压)

1.3电力运行状态分析

对于理想情况下的电路分析,储能电感L1、L2足够大,其时间常数远大于开关的周期,流过储能电感的电流IL可近似认为是线性的。

电容C1、C2也足够大,能够维持两端电压恒定。

此外,开关管Q及二极管都具有理想的开关特性。

分析电路图可以得到:

1.3.1Q开通时电路运行分析

MOSFET开通时的等效电路如图2所示:

图3、Q开通时的等效电路图

Q开通时,输入电源V1对L1充电,储能电容C1对L2充电,电容C2维持着负载R的两端电压。

此时有

(2)

1.3.2Q关断时电路运行分析

MOSFET关断时的等效电路如图2所示:

图4、Q关断时的等效电路图

Q关断后,充在电感L1上的电荷对电容C1放电,充在电感L2上的电荷通过二极管D对负载放电。

(3)

1.3.3输入直流电压V1和输出直流电压V2的关系

稳态时,一个周期T内电感L两端电压UL对时间的积分为零,即

(4)

当Q处于通态时,电感L1、L2两端的电压分别为、,当Q处于关断时,电感L1、L2两端的电压分别为、。

将数据代入式4得:

(5)

求解得:

(6)

稳态时,电容C的电流在一个周期T内的平均值应为零,也就是其对时间的积分为零,即

(7)

当Q处于通态时,流过电容C1、C2的电流分别为、,当Q处于关断时,流过电容C1、C2的电流分别为、。

将数据代入式7得:

(8)

(9)

由式6知,,所以可通过控制占空比的大小来控制输出电压V2的大小。

当ton<

toff时,<

0.5,V2<

V1,电路属于降压式;

当ton=toff时,=0.5,V2=V1;

当ton>

toff时,>

0.5,V2>

V1,电路属于升压式。

1.3.4电路的状态方程

由图2、3可知,等效电路与开关Q的状态有关,所以Sepic斩波电路可分为Q通态和Q断态两个状态来分析。

1)当Q处于通态,系统的微分方程组如下所示

(10)

2)当Q处于断态,系统的微分方程组如下所示

(11)

3)当Q处于断态时,充在电感L1上的电荷对电容C1放电,充在电感L2上的电荷通过二极管D对负载放电,即此过程有可能会出现电感电流的断续。

由于电感L1直接与电源相连,故一般来说L1的电流不会出现断续现象,下面主要讨论电感L2出现断续后,微分方程组的变化。

电感L2断续后,即,此时微分方程组如下所示:

(12)

设,,,,将其代入式10、11,合并后如下:

(13)

其中,u=1表示Q处于导通状态,u=0表示Q处于关断状态。

此外,u=0同时令,即表示Q关断时电感L2的电流出现断续时的状态。

2Sepic电路各元件的参数选择

2.1Sepic电路参数初值

题目中给定,输入电压V1=20-40V,输出电压V2=26V,负载电流I0=0~1A,开关管Q的控制端的信号频率F=50kHZ,即周期T=2*10-5s。

为了简化电路计算,更好地描述电路运行状态,现作如下假设:

(1)电源电压为40V时为最差状态。

(2)电路能达到满载电流1A。

(3)忽略开关管的正向导通压降和二极管的正向压降。

(4)忽略线路电阻和电磁振荡所造成的能量损耗。

2.2电路各元件的参数确定

2.2.1负载电阻RL的确定

负载电阻RL按式14确定

(14)

求得负载电阻RL=26Ω.

2.2.2电感L1、L2的确定

SPEIC使用两个电感L1和L2,这两个电感可以绕在同一个磁芯上,因为在整个开关周期内加在它们上面的电压是一样的。

使用耦合电感比起使用两个独立的电感可以节省PCB的空间并且可以降低成本。

确定电感的一个好规则就是,在最小输入电压下,使得纹波电流峰峰值大约等于最大输入电流的40%。

在数值相同的电感L1和L2中流动的纹波电流由下面公式算出:

电感由15式求得

(15)

f为开关频率,αmax是最小Vin时的占空比。

维持电感发挥作用的电感峰值电流还没有饱和,可由下式计算∶

如果L1和L2绕在同一个磁芯上,因为互感作用上式中的电感值就可用2L代替。

电感值可这样计算∶

2.2.3储能电容C1的确定

储能电容C1的选择主要看RMS电流(有效电流),可由下式得出∶

SEPIC电容必须能够承受跟输出功率有关的有效电流。

这种特性使SEPIC特别适用于流过电容的有效电流(跟电容技术有关)相对较小的小功率应用。

SEPIC电容的电压额定值必须大于最大输入电压。

C1的纹波电压的峰峰值可以这样计算∶

(16)

取=0.4V得=28.261uF。

满足需要的有效电流的电容在C1上一般不会产生太大的纹波电压,因此峰值电压通常接近输入电压。

2.2.4滤波电容C2的确定

在SEPIC中,当电源开关Q1打开时,电感充电,输出电流由输出电容提供。

因此输出电容会出现很大的纹波电流。

选定的输出电容必须能够提供最大的有效电流。

输出电容上的有效电流是∶

图5、输出纹波电压

ESR、ESL和大容量的输出电容直接控制输出纹波。

如图4所示,假设一半纹波跟ESR有关,另外一半跟容量有关,因此

(17)

输出电容必须满足有效电流、ESR和容量的需求。

取纹波电压为2%的输出电压

2.2.5输出二极体的选择

选择能够承受峰值电流和反向电压的二极体。

在SPEIC中,二极体的峰值电流跟开关的峰值电流IQ1peak相同。

二极体必须承受的最小反向峰值电压是∶

VRD1=Vin+Vout=66V(18)

跟升压转换器相似,二极体的平均电流跟输出电流相同。

二极体的功耗等于输出电流乘以二极体的正向压降。

为了提高效率建议使用肖特基二极体。

2.2.6功率MOSFET的选择

最小阈值电压Vth(min)、导通电阻RDS(ON)、栅漏电荷QGD和最大漏源电压VDS(max)是选择MOSFET的关键参数。

逻辑电平或子逻辑电平阈值MOSFET应该根据栅极电压使用。

峰值开关电压等于Vin+Vout。

峰值开关电流由下式计算∶

(19)

流过开关的RMS电流由下式给出∶

(20)

MOSFET的散耗功率PQ1大概是∶

(21)

PQ1,MOSFET总的功耗包括导通损耗(上式第一项)和开关损耗(上式第二项)。

IGATE为栅极驱动电流。

RDS(ON)值应该选最大工作结温时的值,一般在MOSFET资料手册中给出。

要确保导通损耗加上开关损耗不会超过封装的额定值或者超过散热设备的极限。

2.2.7编程计算所需参数

在下面编程计算过程中,所需的电路参数如表1所示:

表1、Sepic斩波电路各元件参数值

电路元件

负载电阻(Ω)

电感L1(mH)

电感L2(mH)

电容C1

(μF)

电容C2

频率F(kHZ)

数值

26

0.435

28.261

43.480

50

3控制策略的设定

由知,,由于V2=26V,V1=20~40V,即有=0.394~0.565。

V1初值为40V,即占空比的初值为0.394.

由于输入不稳定,要想得到稳定的输出,需要对占空比拟定相应的控制策略。

本例采用的控制策略为:

在每一次循环的结尾处对占空比d(i)作一定的调整,满足下式

(22)

其中,k取0.00003,为每次计算后的输出电压V2,26为理想输出电压。

当,,即对占空比进行正向的调整,占空比增大,由式可知,输出的增大,即缩小与26的差距。

反之,当,,即对占空比进行负向的调整,占空比减小,输出的也变小,使输出逼近26。

由上面分析可知,只要k取值足够小,循环次数n足够大,可以使输出电压稳定在26V附近。

虽然k的取值越小,精度越高,但是k取值变小的同时也要求迭代次数n变大,否则迭代n次后还没有收敛结束。

另一方面,迭代次数n的增大使得程序运行时间变长,本例选择k=0.00003,n=2500,程序运行一次的时间约为5s。

根据对输出电压平均值进行调制的方式不同,斩波电路可有三种控制方式:

1)保持开关周期T不变,调节开关导通时间ton,称为脉冲宽度调制。

2)保持开关导通时间ton不变,改变开关周期T,称为频率调制。

3)ton和T都可调,使占空比改变,称为混合型。

根据题目要求,开关频率F固定为50kHZ,故应采取第一种控制方式。

4Matlab编程仿真

在电力电子技术教学中,通常利用PowerPoint,Authorware,,VB,,Flash等软件辅助教学,这些软件虽然可以提供一些比较生动的动画和波形,但其并非仿真软件,关于电力电子器件的物理概念不突出,且应用灵活性较差。

EWB、PSpice、Protel、Matlab、SA-BER、PLECS等专用软件体现了很好的灵活性,能够很好地满足教学要求。

在这些软件中,Matlab/Simulink软件构建仿真系统较灵活,被广泛应用于电力电子技术教学中;

PLECS软件能为系统级电路仿真提供一个与Simulink模型完全无缝的结合,在电力电子系统和电力驱动器的模拟上可以进行简化,其仿真速度快,开关转换理想化,稳定性好。

因此,,Matlab和PLECS软件相结合进行电力电子系统仿真是一种十分理想的选择。

下面采用Matlab对Sepic进行仿真计算并分析仿真结果。

4.1根据状态方程编写Matlab子程序

根据上述的电路分析可知,电路可能出现三种状态,每一种状态对应着不同的微分方程组。

根据综合后的微分方程式13,可建立对应于电路的三种工作状态的子函数。

综合后的微分方程所下所示

(23)

1)建立子函数fun1.m

此时根据式23,令u=1,可得此时的微分方程,子函数语句如下:

functiondy2=fun1(t,y);

globalV1RL1C1C2L2;

%定义全局变量

dy2=[V1/L1;

y(3)/L2;

-y

(2)/C1;

-y(4)/(C2*R)];

%状态一的微分方程

2)建立子函数fun2.m

此时根据式23,令u=0,可得此时的微分方程,子函数语句如下:

functiondy=fun2(t,y);

%定义全局变量

dy=[(V1-y(3)-y(4))/L1;

-y(4)/L2;

y

(1)/C1;

(y

(1)+y

(2)-y(4)/R)/C2];

%状态二的微分方程

3)建立子函数fun3.m

Q关断时电感L2对负荷放电,放电结束后电流出现断续,此时根据式23,令u=0、可得此时的微分方程,子函数语句如下:

functiondydt=fun3(t,y)

dydt=[(V1-y(3)-y(4))/L1;

0;

(y

(1)-y(4)/R)/C2];

%状态三的微分方程

4.2求解算法的基本思路

基于Matlab编程采用的思路如下所示

算法流程图

4.3Matlab求解Sepic电路主程序

在4.1中建立了三个Matlab的子程序fun1.m、fun2.m、fun3.m,分别对应了电路的三种状态。

其中fun1.m为开关管Q导通时的微分方程模型,fun2.m为开关管Q关断时的微分方程模型,fun3.m为开关管Q关断时电感L2放电结束后的微分方程模型。

根据4.2的算法流程图编写的Matlab主程序如下:

主程序:

clear;

globalV1RL1C1C2L2dfnm;

%定义全局变量

m=0;

%记录电感L2的电流断续的次数

R=26;

L1=0.435e-3;

L2=0.435e-3;

C1=28.261e-6;

C2=43.480e-6;

f=50000;

T=1/f;

n=2500;

%迭代的次数

V1=20+20*rand

(1);

%输入电压为20~40V

d=0.394*ones(n,1);

%定义占空比初值为0.394的一组向量

uo=zeros(n,1);

%定义输出初值1的一组向量

yy=[0,0,0,0];

%微分方程求解的初值

fori=1:

n;

ton=d(i)*T;

toff=T-ton;

%ton为导通时间,toff为关断时间

[t,y1]=ode45('

fun1'

linspace(0,ton,6),yy);

yy=y1(end,:

);

%将导通时间的末值作为关断时间的初值

[t,y2]=ode45('

fun2'

linspace(ton,T,6),yy);

yy=y2(end,:

%将关断时间的末值作为下一次导通时间的初值

ify2(end,2)<

0%如果电流末值小于零,重新计算关断时间内的电压、电流

fora=1:

length(y2)%找出iL2=0的点

ify2(a,2)<

0

b=a;

break,

end

end

m=m+1;

%记录电流断续次数

[nnmm]=size(y2);

toff1=toff*((b-1.5)/(nn-1));

%根据iL2=0的点计算toff1

toff2=toff-toff1;

%根据iL2=0的点toff2

[t1,y21]=ode45('

linspace(0,toff1,6),yy);

%计算toff1内的电压、电流

y21(end,1)=0;

%设置末值为下次计算的初值

[t2,y22]=ode45('

fun3'

linspace(0,toff2,6),y21(end,:

));

%计算toff2内的电压、电流

t=[t1;

t2+toff1];

y2=[y21;

y22];

end

uo(i)=(y1(end,4)+y2(end,4))/2;

%输出为uo

I1(i)=y2(end,1);

%输出电感L1电流

I2(i)=y2(end,2);

%输出电感L2电流

VC1(i)=y2(end,3);

%输出电容C1电压

k=0.00003;

d(i+1)=d(i)+k*(26-uo(i));

%每次迭代调整占空比

ifd(i+1)>

=1;

d(i+1)=0.999;

elseifd(i+1)<

=0;

d(i+1)=0.001;

end

uo(i)

%画图

figure

(1);

plot(linspace(0,1/100000*n,n),uo);

%画出输出电压V2波形

title('

输出电压V2的波形图'

xlabel('

t(s)'

ylabel('

V2(V)'

gridon;

figure

(2);

plot(linspace(0,1/100000*n,n),I1);

%画出电感L1电流波形

I1的波形图'

xlabel('

I1(A)'

gridon;

figure(3);

plot(linspace(0,1/100000*n,n),I2);

%画出电感L2电流波形

I2的波形图'

I2(A)'

gridon

figure(4);

plot(linspace(0,1/100000*n,n),VC1);

%画出电容C1电压波形

VC1的波形图'

VC1(V)'

程序运行后,结果如下所示:

其中V2输出为25.9920V。

输出电压V2电感L1电流IL1

电感L2电流IL2电容C1电压VC1

5通过分析仿真结果合理选取电路参数L1,L2,C1,C2

预设参数为L1=0.435mH,L2=0.435mH,C1=28.261uF,C2=43.480uF,现通过Matlab仿真结果对比分析波形,对参数进行校核。

5.1参数L1的确定

1)减小L1,L1取0.2mH,输出电压V2波形如下,此时V2不能很好地收敛,波形出现畸变。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > IT计算机 > 互联网

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2