金属基复合材料的制备方法文档格式.doc

上传人:wj 文档编号:6972021 上传时间:2023-05-07 格式:DOC 页数:6 大小:46.50KB
下载 相关 举报
金属基复合材料的制备方法文档格式.doc_第1页
第1页 / 共6页
金属基复合材料的制备方法文档格式.doc_第2页
第2页 / 共6页
金属基复合材料的制备方法文档格式.doc_第3页
第3页 / 共6页
金属基复合材料的制备方法文档格式.doc_第4页
第4页 / 共6页
金属基复合材料的制备方法文档格式.doc_第5页
第5页 / 共6页
金属基复合材料的制备方法文档格式.doc_第6页
第6页 / 共6页
亲,该文档总共6页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

金属基复合材料的制备方法文档格式.doc

《金属基复合材料的制备方法文档格式.doc》由会员分享,可在线阅读,更多相关《金属基复合材料的制备方法文档格式.doc(6页珍藏版)》请在冰点文库上搜索。

金属基复合材料的制备方法文档格式.doc

③细粒复合材料。

④混杂复合材料。

[1]

二:

金属基复合材料简介

(1)定义:

金属基复合材料是以金属或合金为基体,以高性能的第二相为增强体的复合材料。

它是一类以金属或合金为基体,以金属或非金属线、丝、纤维、晶须或颗粒状组分为增强相的非均质混合物,其共同点是具有连续的金属基体。

(2)分类:

按增强体类型分为:

1.颗粒增强复合材料;

2.层状复合材料;

3.纤维增强复合材料

按基体类型分为:

1.铝基复合材料;

2.镍基复合材料;

3.钛基复合材料;

4.镁基复合材料

按用途分为:

1.结构复合材料;

2.功能复合材料

(3)性能特征:

金属基复合材料的性能取决于所选用金属或合金基体和增强物的特性、含量、分布等。

综合归纳金属基复合材料有以下性能特点。

A.高比强度、比模量

B.良好的导热、导电性能

C.热膨胀系数小、尺寸稳定性好

D.良好的高温性能和耐磨性

E.良好的断裂韧性和抗疲劳性能

F.不吸潮、不老化、气密性好

三发展概况:

近20多年来,金属基复合材料一直是人们深入研究的对象,很多金属被考虑作为可能的集体材料。

包括锂(Li)、镁(Mg)、硅(Si)、铝(Al)、钛(Ti)、铜(Cu)镍(Ni)、锌(Zn)等。

轻金属最具有应用潜力,这主要是因为复合材料的比强度有很重要的使用意义。

很多制备金属基复合材料的方法被人们提出,并得到发展完善以致工业应用。

根据基体合金的状态,大致可以分为固态扩散法、粉末冶金法、熔铸法几大类。

熔铸法由于工艺成本低,因而得到广泛的研究与应用。

常见的较为成熟的工艺主要有挤压铸造,半固态复合铸造,以及浸渗法。

金属基复合材料可以分为两大类,连续增强型和非连续增强型复合材料。

有人指出,金属基复合材料发展的未来前景主要在于非连续增强,特别是SiC[1]

四、金属基复合材料的研究现状

1.金属基复合材料的界面

金属基复合材料的界面问题一直是困扰本领域工作者的重大问题.因为金属基复合材料的界面有三种类型,而且界面以五种不同的方式结合,所以界面区结构非常复杂.虽然多数金属基复合材料是以界面反应的形式结合,但是反应的程度受工艺方法及温度参数的影响极大,同时由于界面区尺寸仅为纳米级,从而使分析表征工作困难很大.

2.金属基复合材料的凝固过程

金属的凝固过程已经研究得比较成熟,但金属基复合材料的凝固过程由于增强体的存在使基体金属的凝固过程变得复杂,难以套用现有的金属凝固理论.实际上由于增强体的存在,其凝固过程中的温度场和浓度场、晶体生长的热力学和动力学过程都会发生变化。

同时一般凝固过程均处于非平衡条件下,因此流体的流动行为、溶质的再分配规律以及凝固体的组织形态也有相应的变化。

3.非连续增强金属基复合材料的制备科学

非连续增强体(颗粒、短纤维、晶须)增强的金属基复合材料,由于其制造工艺较简单,价格相对低廉,所以在汽车、纺织等民用工业中初步获得应用,特别是SiC颗粒增强和硅酸铝(或莫来石)短纤维增强的复合材料现在已有一定的生产规模。

4.金属基复合材料的原位复合

金属基复合材料的原位复合工艺基本上能克服其它工艺中通常出现的一系列问题,如基体与增强体浸润不良,界面反应产生脆性层,增强体分布不均匀,特别是对微小的(亚微米和纳米级)增强体极难进行复合等,作为一种具有突破性的新工艺方法而受到普遍的重视,并广泛开展了研究工作。

其中包括直接氧化法、无压力浸润法、自蔓延法和在金属中已有研究基础的原位共晶生长法等。

五、金属基复合材料的制备

(一)粉末冶金复合法

粉末冶金复合法基本原理与常规的粉末冶金法相同,包括烧结成形法、烧结制坯加塑法加工成形法等适合于分散强化型复合材料(颗粒强化或纤维强化型复合材料)的制备与成型。

粉末冶金复合法的工艺主要优点是:

基体金属或合金的成分可自由选择,基体金属与强化颗粒之间不易发生反应;

可自由选择强化颗粒的种类、尺寸,还可多种颗粒强化;

强化颗粒添加量的范围大;

较容易实现颗粒均匀化。

缺点是:

工艺复杂,成本高;

制品形状、尺寸受限制;

微细强化颗粒的均匀分散困难;

颗粒与基体的界面不如铸造复合材料等。

(二)铸造凝固成型法

铸造凝固成型法是在基体金属处于熔融状态下进行复合。

主要方法有搅拌铸造法、液相渗和法和共喷射沉积法等。

铸造凝固成型铸造复合材料具有工艺简单化、制品质量好等特点,工业应用较广泛。

1、原生铸造复合法

原生铸造复合法(也称液相接触反应合成技术LiquidContactReaction:

LCR)是将生产强化颗粒的原料加到熔融基体金属中,利用高温下的化学反应强化相,然后通过浇铸成形。

这种工艺的特点是颗粒与基体材料之间的结合状态良好,颗粒细小(0.25~1.5μm),均匀弥散,含量可高达40%,故能获得高性能复合材料。

常用的元素粉末有钛、碳、硼等,化合物粉末有Al2O3、TiO2、B2O3等。

该方法可用于制备A1基、Mg基、Cu基、Ti基、Fe基、Ni基复合材料,强化相可以是硼化物、碳化物、氮化物等。

2、搅拌铸造法

搅拌铸造法也称掺和铸造法等,是在熔化金属中加入陶瓷颗粒,经均匀搅拌后浇入铸模中获得制品或二次加工坯料,此法易于实现能大批量生成,成本较低。

该方法在铝基复合材料的制备方面应用较广,但其主要缺点是基体金属与强化颗粒的组合受限制。

原因有两方面:

①强化颗粒与熔体基本金属之间容易产生化学反应;

②强化颗粒不易均匀分散在铝合金一类的合金熔体中,这是由于陶瓷颗粒与铝合金的润滑性较差,另一个问题是陶瓷颗粒容易与溶质原子一起在枝晶间产生偏析。

3、半固态复合铸造法

半固态复合铸造法是从半固态铸造法发展而来的。

通常金属凝固时,初生晶以枝晶方式长大,固相率达0.2%左右时枝晶就形成连续网络骨架,失去宏观流动性。

如果在液态金属从液相到固相冷却过程中进行强烈搅拌则使树枝晶网络骨架被打碎而保留分散的颗粒状组织形态,悬浮于剩余液相中,这种颗粒状非枝晶的微组织在固相率达0.5%~0.6%仍具有一定的流变性。

液固相共存的半固态合金因具有流变性,可以进行流变铸造;

半固态浆液同时具有触变性,可将流变铸锭重新加热到固、液相变点软化,由于压铸时浇口处及型壁的剪切作用,可恢复流变性而充满铸型。

强化颗粒或短纤维强化材料加入到受强烈搅拌的半固态合金中,由于半固态浆液球状碎晶粒对添加颗粒的分散和捕捉作用,既防止颗粒的凝聚和偏析,又使颗粒在浆液中均匀分布,改善了润湿性并促进界面的结合。

4、含浸凝固法(MI技术)

含浸凝固法是一种将预先制备的含有较高孔隙率的强化相成形体含浸于熔融基体金属之中,让基体金属浸透预成型体后,使其凝固以制备复合材料的方法。

有加压含浸和非加压含浸两种方法。

含浸法适合于强化相与熔融基体金属之间润湿性很差的复合材料的制备。

强化相含量可高达30%~80%;

强化相与熔融金属之间的反应得到抑止,不易产生偏折。

但用颗粒作强化相时,预成形体的制备较困难,通常采用晶须、短纤维制备预成形体。

熔体金属不易浸透至预成形体的内部,大尺寸复合材料的制备较困难。

5、离心铸造法

广泛应用于空心件铸造成形的离心铸造法,可以通过两次铸造成型法成形双金属层状复合材料,此方法简单,具有成本低、铸件致密度高等优点,但是界面质量不易控制,难以形成连续长尺寸的复合材料。

6、加压凝固铸造法

该法是将金属液浇注铸型后,加压使金属液在压力下凝固。

金属从液态到凝固均处于高压下,故能充分浸渗,补缩并防止产生气孔,得到致密铸件。

铸、锻相结合的方法又称挤压铸造、液态模锻、锻铸法等。

加压凝固铸造法可制备较复杂的MMCs零件,亦可局部增强。

由于复合材料易在熔融状态下压力复合,故结合十分牢固,可获得力学性能很高的零件。

这种高温下制成的复合坯,二次成型比较方便,可进行各种热处理,达到对材料的多种要求。

7、热浸镀与反向凝固法

热浸镀与反向凝固法都是用来制备连续长尺寸包覆材料的方法。

热浸镀主要用于线材的连续镀层,主要控制通过镀层区的长度和芯线通过该区的速度等。

反向凝固法是利用薄带作为母带,以一定的拉速穿过反向凝固器,由于母带的速度远远低于熔融金属的速度,在母带的表面附近形成足够大的过冷度,熔融金属以母带表面开始凝固生长,配置在反向凝固器上方的一对轧辊,同时起到拉坯平整和焊合的作用。

8、真空铸造法

真空铸造法是先将连续纤维缠绕在绕线机上,用聚甲丙烯酸等能分解的有机高分子化合物方法制成半固化带,把预成型体放入铸型中,加热到500℃使有机高分子分解。

铸型的一端浸入基体金属液,另一端抽真空,将金属液吸入型腔浸透纤维。

(三)喷射成形法

喷射成形又称喷射沉积(SprayForming),是用惰性气体将金属雾化成微小的液滴,并使之向一定方向喷射,在喷射途中与另一路由惰性气体送出的增强微细颗粒会合,共同喷射沉积在有水冷衬底的平台上,凝固成复合材料。

凝固的过程比较复杂,与金属的雾化情况、沉积凝固条件或增强体的送入角有关,过早凝固不能复合,过迟的凝固则使增强体发生上浮下沉而分布不匀。

这种方法的优点是工艺快速,金属大范围偏析和晶粒粗化可以得到抑制,避免复合材料发生界面反应,增强体分布均匀。

缺点是出现原材料被气流带走和沉积在效应器壁上等现象而损失较大,还有复合材料气孔率以及容易出现的疏松。

利用喷射成形原理制备工艺有添加法(inertsprayform-ing)和反应法(reactivesprayforming)两种。

OspreyMetals研究的Osprey工艺是喷射成形法的代表,其强化颗粒与熔融金属接触时间短,界面反应得以有效抑制。

反应喷射沉积法是使强化陶瓷颗粒在金属雾或基体中自动生成的方法。

(四)叠层复合法

叠层复合法是先将不同金属板用扩散结合方法复合,然后采用离子溅射或分子束外延方法交替地将不同金属或金属与陶瓷薄层叠合在一起构成金属基复合材料。

这种复合材料性能很好,但工艺复杂难以实用化。

目前这种材料的应用尚不广泛,过去主要少量应用或试用于航空、航天及其它军用设备上,现在正努力向民用方向转移,特别是在汽车工业上有很好的发展前景。

(五)原位生成复合法

原位生成复合法也称反应合成技术,金属基复合材料的反应合成法是指借助化学反应,在一定条件下在基体金属内原位生成一种或几种热力学稳定的增强相的一种复合方法。

这种增强相一般为具有高硬度、高弹性模量和高温强度的陶瓷颗粒,即氧化物、碳化物、氯化物、硼化物、甚至硅化物,它们往往与传统的金属材料,如Al、Mg、Ti、Fe、Cu等金属及其合金,或(NiTi)(AlTi)等金属间化合物复合,从而得到具有优良性能的结构材料或功能材料。

金属基复合材料的原位复合工艺基本上能克服其它工艺中常出现的一系列问题,如基体与增强体浸润不良、界面反应产生脆性、增强体分布不均匀、对微小的(亚微米和纳米级)增强体极难进行复合等。

它作为一种具有突破性的新工艺方法而受到普遍的重视,其中包括直接氧化法、自蔓延法和原位共晶生长法等。

1、直接氧化(DIMON)法

直接氧化法是由氧化性气体在一定工艺条件下使金属合金液直接氧化形成复合材料。

通常直接氧化法的温度比较高,添加适量的合金元素如Mg、Si等,可使反应速度加快。

这类复合材料的强度、韧性取决于形成粒子的状态和最终显微组织形态。

由于形成的增强体可以通过合金化及其反应热力学进行判断,因此可以通过合金化、炉内气氛的控制来制得不同类型增强体的复合材料。

2、放热弥散(XD)法

放热弥散复合技术(ExothermicDispersion)的基本原理是将增强相反应物料与金属基粉末按一定的比例均匀混合,冷压或热压成型,制成坯块,以一定的加热速率加热,在一定的温度下(通常是高于基体的熔点而低于增强相的熔点)保温,使增强相各组分之间进行放热化学反应,生成增强相。

增强相尺寸细小,呈弥散分布。

XD技术具有很多优点:

①可合成的增强相种类多,包括硼化物、碳化物、硅化物等;

②增强相粒子的体积百分比可以通过控制增强相组分物料的比例和含量加以控制;

③增强相粒子的大小可以通过调节加热温度加以控制;

④可以制备各种MMC;

⑤由于反应是在融熔状态下进行,可以进一步近终形成型。

XD技术是合成颗粒增强金属基及金属间化合物基复合材料的最有效的工艺之一。

但用XD工艺制成的产品存在着较大孔隙度的问题,目前一般采用在反应过程中直接压实来提高致密度。

3、SHS-铸渗法

SHS-铸渗法是将金属基复合材料的自蔓延高温合成技术(Self-PropagatingHighTemperatureSynthesis)和液态铸造法结合起来的一种新技术,包括增强颗粒的原位合成和铸造成型两个过程。

当前,SHS-铸渗法是有竞争力的反应合成工艺之一,但过程控制非常困难。

其典型工艺为:

利用合金熔体的高温引燃铸型中的固体SHS系,通过控制反应物和生成物的位置,在铸件表面形成复合涂层,它可使SHS材料合成与致密化、铸件的成形与表面涂层的制备同时完成。

4、反应喷射沉积技术(RSD)

反应喷射沉积工艺(ReactiveSprayDeposition)生成陶瓷颗粒的反应有气—液反应、液—液反应、固—液反应和加盐反应等多种类型。

它综合了快速凝固及粉末冶金的优点,并克服了喷射共沉积工艺中存在的如颗粒与基体接近机械结合、增强相体积分数不能太高等缺点,成为目前金属基复合材料研究的重要方向之一。

反应喷射沉积工艺过程为:

金属液被雾化前喷入高活性的固体颗粒发生液固反应,导致喷入的颗粒在雾化过程中溶解并与基体中的一种或多种元素反应形成稳定的弥散相,控制喷雾的冷却速率以及随后坯件的冷却速率可以控制弥散相的尺寸。

[2]

六、金属基复合材料的发展前景

金属基复合材料要在未来取得进一步的发展,并列人规模生产品种的行列,还有一段艰难的路程,但是由于它性能优势的存在,是有明确发展前景的,这就需要广大材料研究工作者进行深人细致的基础研究,探索新的工艺方法并开拓新的有针对性的应用范围。

[3]

在界面研究方面,应致力于发展更有力的分析手段,在对界面结构认识清楚的基础上进行界面优化设计,克服金属基复合材料突出的界面问题,并力求研究结果有助于改善生产应用问题,其他基础性问题如凝固过程的研究等也应围绕生产实际过程,提出有效的措施,这样才真正起到促进金属基复合材料的迅速发展的作用。

就当前的实际情况来看,颗粒和短纤维增强的复合材料是有生命力的,并已在汽车工业等方面初步获得应用。

但是其制备科学仁尚留下大量间题有待解决。

原位复合是有发展有前途的,但是,目前在原位反应时,除了所预计生成的增强体外,仍不免其他副反应夹杂物存在,同时对增强体的体积分数也难以精确控制,因而影响材料质量稳定性。

[4]

七、结束语

我国金属基复合材料的研究起步仅落后于美、日等国不到五年。

鉴于国际上金属基复合材料尚未大规模生产,因此目前差距不大。

目前主要集中在以轻金属(如铝、镁、钛)等为基体的复合材料研究,少量研究致力于铜、铁、铅基体的复合材料。

增强的形式包括连续纤维、短纤维、晶须和颗粒。

但在关于其理论基础性研究的理论深度上与国外有一定的差距,特别是在原子、分子水平上深入认识界面的结构方面不够,这主要是缺少先进的分析表征手段和物理学家的介入不够有关。

对于大批量生产的复合材料来讲,轧制复合是特别有效的复合方法。

无论采用热轧还是冷轧,在不同的材料复合中都在广泛的研究和应用。

其适用性和经济性是其它复合方法所不能比拟的。

总之,我国对复合材料科学研究正方兴未艾,目前的科学研究正向着使复合材料廉价和提高可靠性方面发展,以加强复合材料与其他传统材料的竞争优势。

八、参考文献:

[1]《原位金属基复合材料的制备原理及工艺》崔春翔吴人洁王浩伟

[2]《金属基复合材料的制备及力学性能》王广欣著

[3]《金属基复合材料》于春田

[4]《金属基复合材料导论》T.W.克莱因

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 幼儿教育 > 幼儿读物

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2