伺服驱动系统设计方案Word文档下载推荐.docx

上传人:b****3 文档编号:7031930 上传时间:2023-05-07 格式:DOCX 页数:11 大小:598.15KB
下载 相关 举报
伺服驱动系统设计方案Word文档下载推荐.docx_第1页
第1页 / 共11页
伺服驱动系统设计方案Word文档下载推荐.docx_第2页
第2页 / 共11页
伺服驱动系统设计方案Word文档下载推荐.docx_第3页
第3页 / 共11页
伺服驱动系统设计方案Word文档下载推荐.docx_第4页
第4页 / 共11页
伺服驱动系统设计方案Word文档下载推荐.docx_第5页
第5页 / 共11页
伺服驱动系统设计方案Word文档下载推荐.docx_第6页
第6页 / 共11页
伺服驱动系统设计方案Word文档下载推荐.docx_第7页
第7页 / 共11页
伺服驱动系统设计方案Word文档下载推荐.docx_第8页
第8页 / 共11页
伺服驱动系统设计方案Word文档下载推荐.docx_第9页
第9页 / 共11页
伺服驱动系统设计方案Word文档下载推荐.docx_第10页
第10页 / 共11页
伺服驱动系统设计方案Word文档下载推荐.docx_第11页
第11页 / 共11页
亲,该文档总共11页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

伺服驱动系统设计方案Word文档下载推荐.docx

《伺服驱动系统设计方案Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《伺服驱动系统设计方案Word文档下载推荐.docx(11页珍藏版)》请在冰点文库上搜索。

伺服驱动系统设计方案Word文档下载推荐.docx

交流伺服电机的工作原理和单相感应电动机无本质上的差异。

但是,交流伺服电机必须具备一个性能,就是能克服交流伺服电机的所谓“自转”现象,即无控制信号时,它不应转动,特别是当它已在转动时,如果控制信号消失,它应能立即停止转动。

而普通的感应电动机转动起来以后,如控制信号消失,往往仍在继续转动。

交流伺服电动机的工作原理与分相式单相异步电动机虽然相似,但前者的转子电阻比后者大得多,所以伺服电动机与单机异步电动机相比,有三个显著特点:

1、起动转矩大

由于转子电阻大,其转矩特性曲线如图3中曲线1所示,与普通异步电动机的转矩特性曲线2相比,有明显的区别。

它可使临界转差率S0>1,这样不仅使转矩特性(机械特性)更接近于线性,而且具有较大的起动转矩。

因此,当定子一有控制电压,转子立即转动,即具有起动快、灵敏度高的特点。

图3伺服电动机的转矩特性

在控制电压一定时,负载增加,转速下降。

图5伺服电动机的机械特性

交流伺服电动机的输出功率一般是0.1-100W。

当电源频率为50Hz,电压有36V、110V、220、380V;

当电源频率为400Hz,电压有20V、26V、36V、115V等多种。

交流伺服电动机运行平稳、噪音小。

但控制特性是非线性,并且由于转子电阻大,损耗大,效率低,因此与同容量直流伺服电动机相比,体积大、重量重,所以只适用于0.5-100W的小功率控制系统。

***机器手伺服控制系统设计分析

变频与伺服的关系:

目前市场上变频控制器的用途要大大的大于伺服机构,有必要搞清伺服和变频两个系统之间的关系,以便提高可参考设计的途径,这样才能以最低的成本达到设计出自己的伺服控制的目的。

简单的说:

变频只是伺服的一个部分,伺服是在变频的基础上进行闭环的精确控制从而达到更理想的效果。

我们的目标和步骤要在变频系统的基础上,首先解决电机的驱动问题,达到调速目的,然后加入对反馈的采样,设计自己的PID算法,最终完成闭环控制。

当然,这种系统的设计是有难度的,因为简单的看如果系统完成仅仅做一个单独的伺服电机的控制系统就已经能有一定的市场,如果系统简单的话,伺服系统的价格应该不是现在的价位!

所以正确的分析系统难度是保证系统的正确完成的基础。

首先控制部分的算法是各厂家保密的技术环节,如果仅仅使用传统的调节电容移相的控制方式不适合于高精度定位控制的需要。

那么我们必然要选择AC-DC-AC的过程,这中间的DC-AC的三相逆变技术是必须要攻克的。

如果简单的PWM电机调速使用通常的技术手段可以实现,但是相对高频的(400HZ)三相逆变需要系统处理要有很高的速度。

其次DSP技术的应用需要比较高的理论基础,这对我们是一种挑战,合理的算法和处理机制是实现最终控制的必然途径,要克服理论上的差距,必要的学习和钻研过程是不可避免的。

这中间和熟悉的技术开发产品的差异是时间的损耗!

PID的控制算法是销售伺服控制系统公司的技术命脉,PID算法的好坏直接决定下一步机械手系统的运转的平稳和系统精度的保证。

对任何公司来说,设计专用的PID算法都是公司技术含量最高的部分。

这部分包含自动控制算法、错误的处理和动作判断以及控制方式的选择。

伺服电机的选择:

目前定型为松下400HZ36V三相交流伺服电机?

(原因)

伺服电机的驱动原理:

交流伺服的技术本身就是借鉴并应用了变频的技术,在直流电机的伺服控制的基础上通过变频的PWM方式模仿直流电机的控制方式来实现的,也就是说交流伺服电机必然有变频的这一环节:

变频就是将工频的50、60HZ的交流电先整流成直流电,然后通过可控制门极的各类晶体管(IGBT,IGCT等)通过载波频率和PWM调节逆变为频率可调的波形类似于正余弦的脉动电,由于频率可调,所以交流电机的速度就可调了(n=60f/2p,n转速,f频率,p极对数)。

交流伺服系统根据其处理信号的方式不同,可以分为模拟式伺服、数字模拟混合式伺服和全数字式伺服;

如果按照使用的伺服电动机的种类不同,又可分为两种:

一种是用永磁同步伺服电动机构成的伺服系统,包括方波永磁同步电动机(无刷直流机)伺服系统和正弦波永磁同步电动机伺服系统;

另一种是用鼠笼型异步电动机构成的伺服系统。

二者的不同之处在于永磁同步电动机伺服系统中需要采用磁极位置传感器而感应电动机伺服系统中含有滑差频率计算部分。

若采用微处理器软件实现伺服控制,可以使永磁同步伺服电动机和鼠笼型异步伺服电动机使用同一套伺服放大器。

 

1、转矩控制:

转矩控制方式是通过外部模拟量的输入或直接的地址的赋值来设定电机轴对外的输出转矩的大小,具体表现为例如10V对应5Nm的话,当外部模拟量设定为5V时电机轴输出为2.5Nm:

如果电机轴负载低于2.5Nm时电机正转,外部负载等于2.5Nm时电机不转,大于2.5Nm时电机反转(通常在有重力负载情况下产生)。

可以通过即时的改变模拟量的设定来改变设定的力矩大小,也可通过通讯方式改变对应的地址的数值来实现。

应用主要在对材质的受力有严格要求的缠绕和放卷的装置中,例如饶线装置或拉光纤设备,转矩的设定要根据缠绕的半径的变化随时更改以确保材质的受力不会随着缠绕半径的变化而改变。

  2、位置控制:

位置控制模式一般是通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的个数来确定转动的角度,也有些伺服可以通过通讯方式直接对速度和位移进行赋值。

由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于定位装置。

应用领域如数控机床、印刷机械等等。

  3、速度模式:

通过模拟量的输入或脉冲的频率都可以进行转动速度的控制,在有上位控制装置的外环PID控制时速度模式也可以进行定位,但必须把电机的位置信号或直接负载的位置信号给上位反馈以做运算用。

位置模式也支持直接负载外环检测位置信号,此时的电机轴端的编码器只检测电机转速,位置信号就由直接的最终负载端的检测装置来提供了,这样的优点在于可以减少中间传动过程中的误差,增加了整个系统的定位精度。

交流伺服电动机有以下三种转速控制方式:

◆幅值控制 

控制电流与励磁电流的相位差保持90°

不变,改变控制电压的大小。

◆相位控制 

控制电压与励磁电压的大小,保持额定值不变,改变控制电压的相位。

◆幅值—相位控制 

同时改变控制电压幅值和相位。

交流伺服电动机转轴的转向随控制电压相位的反相而改变。

一般伺服电机驱动系统框图

伺服电机控制部分框图

系统的设计步骤:

(1)制定控制方案的技术路线,确定驱动电机转动的控制电路:

a)首先确认使用DSP的厂家型号;

b)找出使用该信号控制器驱动伺服电机的模型;

(最好可以演示)

c)绘制控制部分原理图和PCB图通过试验手段,试验各种控制模式下电机的运转;

d)封装硬件及软件模块;

(2)本阶段总结上一阶段的试验成果,吸收并进一步测试各种控制的适用范围,制定电机控制模块的通讯协议、控制模式和PID控制的指导方案:

a)测试反馈信号和处理速度之间的匹配;

b)封装模块的适用范围测试;

c)论证机械手系统适用的伺服电机控制方式;

d)确认系统整体功能需求。

(3)整体系统方案确认阶段:

a)机械手综合控制单元的功能确认;

b)人机界面:

按键和显示单元的模块试验;

c)通讯方式的测试和联机调试;

d)逐次增加电机的数量,测试电机的协调性动作和模块封装;

e)电路安装的结构方案设计。

(4)综合设计阶段:

a)全部硬件的综合性能调试;

b)不同控制模式和不同动作下,细致动作的准确性测试;

c)复杂动作的压力测试和快速反应的数据流量测试;

d)整体功耗测试和烤机测试。

(5)联机调试阶段:

a)脱机操作的各种动作的稳定性测试;

b)待机状态的EMC测试和硬件电路的抗干扰设计验证;

c)联机状态下的综合动作测试及到位反馈;

d)模拟实际现场的烤机测试。

第一阶段所涉及到技术细节及难点分析

如上图首先要通过数学手段,模拟出三相逆变的交流400HZ控制电源;

数学模型和6路3对上下臂的PWM输出方式是这一阶段的两个难点。

上图为三相逆变电路的原理图,但是根据此原理图对功率模块的测试和对称性选择会严重的阻碍项目的进度。

根据,目前掌握的情况,建议我们直接选择IPM模块。

下图为IPM模块的功能图。

根据前期进度要求,同时建议使用单电源的IPM模块。

图1hvic内部结构示意图

图2单电源ipm内部电路

附录:

伺服马达编码器工作原理

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 解决方案 > 学习计划

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2