机械设计中文翻译Word文档下载推荐.docx

上传人:b****3 文档编号:7087689 上传时间:2023-05-07 格式:DOCX 页数:17 大小:36.85KB
下载 相关 举报
机械设计中文翻译Word文档下载推荐.docx_第1页
第1页 / 共17页
机械设计中文翻译Word文档下载推荐.docx_第2页
第2页 / 共17页
机械设计中文翻译Word文档下载推荐.docx_第3页
第3页 / 共17页
机械设计中文翻译Word文档下载推荐.docx_第4页
第4页 / 共17页
机械设计中文翻译Word文档下载推荐.docx_第5页
第5页 / 共17页
机械设计中文翻译Word文档下载推荐.docx_第6页
第6页 / 共17页
机械设计中文翻译Word文档下载推荐.docx_第7页
第7页 / 共17页
机械设计中文翻译Word文档下载推荐.docx_第8页
第8页 / 共17页
机械设计中文翻译Word文档下载推荐.docx_第9页
第9页 / 共17页
机械设计中文翻译Word文档下载推荐.docx_第10页
第10页 / 共17页
机械设计中文翻译Word文档下载推荐.docx_第11页
第11页 / 共17页
机械设计中文翻译Word文档下载推荐.docx_第12页
第12页 / 共17页
机械设计中文翻译Word文档下载推荐.docx_第13页
第13页 / 共17页
机械设计中文翻译Word文档下载推荐.docx_第14页
第14页 / 共17页
机械设计中文翻译Word文档下载推荐.docx_第15页
第15页 / 共17页
机械设计中文翻译Word文档下载推荐.docx_第16页
第16页 / 共17页
机械设计中文翻译Word文档下载推荐.docx_第17页
第17页 / 共17页
亲,该文档总共17页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

机械设计中文翻译Word文档下载推荐.docx

《机械设计中文翻译Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《机械设计中文翻译Word文档下载推荐.docx(17页珍藏版)》请在冰点文库上搜索。

机械设计中文翻译Word文档下载推荐.docx

有时一次零件的故障或者失效可能是很严重的一件事情,比如,当一辆汽车正在高速行驶的时候,突然汽车的轮胎发生爆炸等。

另一方面,一个零件发生故障也可能只是一件微不足道的小事,只是给你造成了一点小麻烦。

一个例子是在一个汽车冷却系统里的暖气装置软管的松动。

后者发生的这次故障造成的结果通常只不过是一些暖气装置里冷却剂的损失,是一种很容易被发现并且被改正的情况。

能够被零件进行吸收的载荷是相当重要的。

一般说来,与静载重相比较,有两个相反方向的动载荷将会引起更大的问题,因此,疲劳强度必须被考虑。

另一个关键是材料是可延展性的还是脆性的。

例如,脆的材料被认为在存在疲劳的地方是不能够被使用的。

很多人错误的把一个零件发生故障或者失效理解成这样就意味着一个零件遭到了实际的物理破损。

无论如何,一名设计工程师必须从一个更广泛的范围来考虑和理解变形是究竟如何发生的。

一种具有延展性的材料,在破裂之前必将发生很大程度的变形。

发生了过度的变形,但并没有产生裂缝,也可能会引起一台机器出毛病,因为发生畸变的零件会干扰下一个零件的移动。

因此,每当它不能够再履行它要求达到的性能的时候,一个零件就都算是被毁坏了(即使它的表面没有被损毁)。

有时故障可能是由于两个两个相互搭配的零件之间的不正常的磨擦或者异常的振动引起的。

故障也可能是由一种叫蠕变的现象引起的,这种现象是指金属在高温下时一种材料的塑性流动。

此外,一个零件的实际形状可能会引起故障的发生。

例如,应力的集中可能就是由于轮廓的突然变化引起的,这一点也需要被考虑到。

当有用两个相反方向的动载荷,材料不具有很好的可延展性时,对应力考虑的评估就特别重要。

一般说来,设计工程师必须考虑故障可能发生的全部方式,包括如下一些方面:

——压力

——变形

——磨损

——腐蚀

——振动

——环境破坏

——固定设备松动

在选择零件的大小与形状的时候,也必须考虑到一些可能会产生外部负载影响的空间因素,例如几何学间断性,为了达到要求的外形轮廓及使用相关的连接件,也会产生相应的残余应力。

凸轮是被应用的最广泛的机械结构之一。

凸轮是一种仅仅有两个组件构成的设备。

主动件本身就是凸轮,而输出件被称为从动件。

通过使用凸轮,一个简单的输入动作可以被修改成几乎可以想像得到的任何输出运动。

常见的一些关于凸轮应用的例子有:

——凸轮轴和汽车发动机工程的装配

——专用机床

——自动电唱机

——印刷机

——自动的洗衣机

——自动的洗碗机

高速凸轮(凸轮超过1000rpm的速度)的轮廓必须从数学意义上来定义。

无论如何,大多数凸轮以低速(少于500rpm)运行而中速的凸轮可以通过一个大比例的图形表示出来。

一般说来,凸轮的速度和输出负载越大,凸轮的轮廓在被床上被加工时就一定要更加精密。

材料的设计属性

当他们与抗拉的试验有关时,材料的下列设计特性被定义如下。

静强度:

一个零件的强度是指零件在不会失去它被要求的能力的前提下能够承受的最大应力。

因此静强度可以被认为是大约等于比例极限,从理论上来说,我们可以认为在这种情况下,材料没有发生塑性变形和物理破坏。

刚度:

刚度是指材料抵抗变形的一种属性。

这条斜的模数线以及弹性模数是一种衡量材料的刚度的一种方法。

弹性:

弹性是指零件能够吸收能量但并没有发生永久变形的一种材料的属性。

吸收的能量的多少可以通过下面弹性区域内的应力图表来描述出来。

韧性:

韧性和弹性是两种相似的特性。

无论如何,韧性是一种可以吸收能量并且不会发生破裂的能力。

因此可以通过应力图里面的总面积来描述韧性,就像用图2.8b描绘的那样。

显而易见,脆性材料的韧性和弹性非常低,并且大约相等。

脆性:

一种脆性的材料就是指在任何可以被看出来的塑性变形之前就发生破裂的材料。

脆性的材料一般被认为不适合用来做机床的零部件,因为当遇到由轴肩,孔,槽,或者键槽等几何应力集中源引起的高的应力时,脆性材料是无法来产生局部屈服的现象以适应高的应力环境的。

延展性:

一种延展性材料会在破裂之前表现出很大程度上的塑性变形现象。

延展性是通过可延展的零件在发生破裂前后的面积和长度的百分比来测量的。

一个在发生破裂的零件,其伸长量如果为5%,则认为该伸长量就是可延展性和脆性材料分界线。

可锻性:

可锻性从根本上来说是指材料的一种在承受挤压或压缩是可以发生塑性变形的能力,同时,它也是一种在金属被滚压成钢板时所需金属的重要性能。

硬度:

一种材料的硬度是指它抵抗挤压或者拉伸它的能力。

一般说来,材料越硬,它的脆性也越大,因此,弹性越小。

同样,一种材料的极限强度粗略与它的硬度成正比。

机械加工性能(或切削性):

机械加工性能是指材料的一种容易被加工的性能。

通常,材料越硬,越难以加工。

压应力和剪应力

除抗拉的试验之外,还有其它一些可以提供有用信息的静载荷的实验类型。

压缩测试:

大多数可延展材料大约有相同特性,当它们处于受压状态的紧张状态时。

极限强度,无论如何,不能够被用于评价压力状态。

当一件具有可延展性的样品受压发生塑性变形时,材料的其它部分会凸出来,但是在这种紧张的状态下,材料通常不会发生物理上的破裂。

因此,一种可延展的材料通常是由于变形受压而损坏的,并不是压力的原因。

剪应力测试:

轴,螺钉,铆钉和焊接件被用这样一种方式定位以致于生产了剪应力。

一张抗拉试验的试验图纸就可以说明问题。

当压力大到可以使材料发生永久变形或发生破坏时,这时的压力就被定义为极限剪切强度。

极限剪切强度,无论如何,不等于处于紧张状态的极限强度。

例如,以钢的材料为例,最后的剪切强度是处于紧张状态大约极限强度的75%。

当在机器零部件里遇到剪应力时,这个差别就一定要考虑到了。

动力载荷

不会在各种不同的形式的力之间不停发生变化的作用力被叫作静载荷或者稳定载荷。

此外,我们通常也把很少发生变化的作用力叫作静载荷。

在拉伸实验中,被分次、逐渐的加载的作用力也被叫作静载荷。

另一方面,在大小和方向上经常发生变化的力则被称为动载荷。

动载荷可以被再细分为以下的3种类型。

变载荷:

所谓变载荷,就是说载荷的大小在变,但是方向不变的载荷。

比如说,变载荷会产生忽大忽小的张应力,但不会产生压应力。

周期性载荷:

像这样的话,如果大小和方向同时改变,则就是说这种载荷会反复周期性的产生变化的拉应力和压应力,这种现象往往就伴随着应力在方向和大小上的周期性变化。

冲击载荷:

这类载荷是由于冲击作用产生的。

一个例子就是一台升降机坠落到位于通道底部的一套弹簧装置上,这套装置产生的力会比升降机本身的重量大上好几倍。

当汽车的一个轮胎碰撞到道路上的一个突起或者路上的一个洞时,相同的冲击荷载的类型也会在汽车的减震器弹簧上发生。

疲劳失效-疲劳极限线图

正如图2.10a所示,如果材料的某处经常会产生大量的周期性作用力,那么在材料的表面就很可能会出现裂缝。

裂缝最初是在应力超过它极限压力的地方开始出现的,而通常这往往是有微小的表面缺陷的地方,例如有一处材料出现瑕疵或者一道极小的划痕。

当循环的次数增加时,最初的裂缝开始在轴的周围的逐渐产生许多类似的裂缝。

所以说,第一道裂缝的意义就是指应力集中的地方,它会加速其它裂缝的产生。

一旦整个的外围斗出现了裂缝,裂缝就会开始向轴的中心转移。

最后,当剩下的固体的内部地区变得足够小,且当压力超过极限强度时,轴就会突然发生断裂。

对断面的检查可以发现一种非常有趣的图案,如图2.13中所示。

外部的一个环形部分相对光滑一些,因为原来表面上相互交错的裂缝之间不断地发生磨擦导致了这种现象的产生。

无论如何,中心部分是粗糙的,表明中心是突然发生了断裂,类似于脆性材料断裂时的现象。

这就表明了一个有趣的事实。

当正在使用的机器零件由于静载荷的原因出现问题时,由于材料具有的延展性,他们通常会发生一定程度的变形。

尽管许多地由于静压力导致的零件故障可以通过频繁的做实际的观察并且替换全部发生变形的零件来避免。

不管怎样,疲劳失效有助于起到警告的作用。

汽车中发生故障的零件中的90%的原因都是因为疲劳的作用。

一种材料的疲劳强度是指在压力的反复作用下的抵抗产生裂缝的能力。

持久极限是用来评价一种材料的疲劳强度的一个重要参数。

进一步说明就是,持久极限就是指在无限循环的作用力下不引起失效的压力值。

让我们回头来看在图2.9所示的疲劳试验机器的。

试验是这样被进行的:

一件小的重物被插入,电动机被启动。

在试样的失效过程中,由计算寄存器记录下循环的次数N,并且弯曲压力的相应最大量由第2.5方程式计算。

然后用一个新的样品替换掉被毁坏的样品,并且将另一个重物插入以增加负荷量。

压力的新的数值再次被计算,并且相同的程序再次被重复进行,直到零件的失效只需要一个完整周期时为止。

然后根据压力值和所需的循环的次数来绘制一个图。

正如图表2.14a所示图形,该图被称为持久极限曲线或者S-N曲线。

由于这需要的前提是要进行无限次的循环,所以我们可以以100万个循环用来作循环参考单位。

因此,持久极限可以从图表2.14a那里看到,该材料是在承受了100万个循环后而没有发生失效的。

用图2.14描绘的关系对于钢的材料来说更为典型,因为当N接近非常大的数字时,曲线就会变得水平。

因此持久极限等于曲线接近一条水平的切线时的压力水平。

由于包含了大量的循环,在绘图时,N通常会被按照对数标度来画,如图2.14b中所示。

当采用这样的方法做时,水平的直线就可以更容易发现材料的持久极限值。

对于钢的材料来说,持久极限值大约等于极限强度的50%。

无论如何,已经加工完成的表面如果不是一样的光滑,持久极限的值就会被降低。

例如,对于钢材料的零件来说,63微英寸(μin)的机械加工的表面,零件的持久极限占理论的持久极限的百分比降低到了大约40%。

而对于粗糙的表面来说(300μin,甚至更多),百分比可能降低到25%左右的水平。

最常见的疲劳损坏的类型通常是由于弯曲应力所引起的。

其次就是扭应力导致的失效,而由于轴向负载引起的疲劳失效却极少发生。

弹性材料通常使用从零到最大值之间变化的剪应力值来做实验,以此来模拟材料实际的受力方式。

就一些有色金属而论,当循环的次数变得非常大时,疲劳曲线不会随着循环次数的增大而变得水平。

,而疲劳曲线的继续变小,表明不管作用力有多么的小,多次的应力反复作用都会引起零件的失效。

这样的一种材料据说没有持久极限。

对于大多数有色金属来说,它们都有一个持久极限,数值大小大约是极限强度的25%。

温度对屈服强度和弹性模数的影响

一般说来,当在说明一种拥有特殊的属性的材料时,如弹性模数和屈服强度,表示这些性能在室温环境下就可以存在。

在低的或者较高的温度下,材料的特性可能会有很大的不同。

例如,很多金属在低温时会变得更脆。

此外,当温度升高时,材料的弹性模数和屈服强度都会变差。

图2.23显示了低碳钢的屈服强度在从室温升高到1000oC过程中被降低了大约70%。

当温度升高时,图2.24显示了低碳钢在弹性模数E方面的削减。

正如从图上可以看见的那样,弹性模数在从室温升高到1000oC过程中大约降低了30%。

从这张图表中,我们也能看到在室温下承受了一定载荷而不会发生变形的零件却可能在高温时承受相同载荷时发生永久变形。

蠕变:

一种塑性变形的现象

由于温度效应的影响,金属中产生了一种被称为蠕变的现象,一个承受了一定的载荷的零件的塑性变形是按照一个时间函数来逐渐增加的。

蠕变现象在室温的条件下也是存在的,但它发生的过程是如此之慢,以致于很少变得像在预期寿命中温度被升高到300oC或更多时那样显著,逐渐增加的塑性变形可能在一段短的时期内变得很明显。

材料的抗蠕变强度是指材料抵抗蠕变的属性,并且抗蠕变强度的数据可以通过处理长期的蠕变试验(模拟实际零件的操作条件)来获得。

在试验的过程中,给定的材料在规定的温度下的塑性应变被被进行了实时监控。

由于蠕变是一种塑性变形现象,发生了蠕变的零件的尺寸可能就会被永久的改变。

因此,如果一个零件是在很强的强度下运转的话,那么设计工程师必须精确地预言将在机器的使用寿命期间可能发生的蠕变的次数。

否则,与此伴随的或者相关的问题就可能发生。

在高温下,当螺栓被用来紧固零件时,蠕变就可能变成一个必须解决的问题。

处在压力状态下的螺钉,蠕变是按照一个时间函数来发生的。

因为变形是塑性的,夹紧力的损失将可能导致螺纹连接件的意外松动。

像这种特殊的现象,通常被称为松弛,我们可以通过进行适当的蠕变强度时测试来确定是不是发生了蠕变。

图2.25显示了三种承受了恒定的张紧力的低碳钢零件的典型的蠕变曲线。

从中,我们可以注意到在高温条件下,蠕变发生的速度逐渐加速,直到零件失效。

从图表里的时间轴上(x轴),我们可以描述在10年的时间里,这种产品的预期寿命。

机器设计者必须理解进行抗拉的静止强度的测试目的。

这种试验可以确定被在设计方程式过程中使用的许多金属的机械特性。

像弹性模数,比例极限,屈服强度,弹性,以及延展性等等可以根据抗拉试验来决定它们的特性。

动载荷是指那些,在大小和方向上发生变化并且可能需要对机器零件在抵抗失效能力上的研究。

由于应力的反复作用,允许使用的安全应力是基于材料的持久极限而不是基于屈服强度或者是极限强度。

压力集中在机器零件改变尺寸的位置发生,例如在一块平的金属板上的一个孔或者一块平板、一个沟槽、一个圆轴上的皮带在宽度方向上的突然变化。

尤其是在一块平板上或一块条板上有一个孔的情况下,当孔的大小减少时,最大应力的值相对于平均应力变得大得多。

减少的压力集中影响的方法通常就是使在形状上的变化更有规律性。

被设计出来的机械零件被用于在低于屈服强度或者极限强度的一些允许的环境下使用。

这种方法可以用来照顾到在加工期间像材料属性的变化和残余应力的产生这样的未知因素,以及用来做近似而不是精确计算的方程式。

根据屈服强度或者极限强度来确定安全系数以决定安全应力的大小。

温度能影响金属的机械特性。

温度的增加可能会引起金属的热胀和蠕变,并且还可能降低它的屈服强度和它的弹性模数。

如果大多数金属不被允许在温度发生变化时发生膨胀或者收缩,那么压力就会被当做载荷来看待。

这现象在依靠干涉配合来进行零件装配时是有益的。

一个毂或者孔的内径比与它相配的轴或者圆柱的直径小一点。

先将毂加热后,由于热胀冷缩,此时可以轻松的将轴插入其中。

当它冷却以后,同样由于热胀冷缩,它的内孔直径会变小,从而对插入其中的轴产生了很大的摩擦力,有效的防止了轴的松动。

计算机辅助制造构造的类型

盘形凸轮.这类凸轮是最受欢迎的类型之一,因为这种凸轮的设计和制造是比较简单和容易的。

如图6.1所示的盘形凸轮。

可以注意到从动件移动到了与凸轮的旋转轴垂直的位置。

所有的凸轮都按照两个不同的实体在运转时不会互相碰撞的基本原理来运行。

因此,随着凸轮的旋转(在这种情况下,一般是逆时针转),从动件要么向上移动要么就接受适当的约束。

我们应该把注意力集中于防止从动件发生粘接和使从动件的运动满足生产的要求。

当从动件向下移动时,弹簧需要使从动件的棍子和凸轮的轮廓保持。

棍子是被用来减少齿轮接触表面的磨擦力的。

对于凸轮的每次旋转来说,从动件通过对凸轮底部死点的冲击使其移动到顶端。

图6.2所示的是一个带有一个尖顶从动件的盘形凸轮。

复杂的动作可以通过这类从动件产生,因为一个点能够精确地跟随着凸轮轮廓的任何突然变化。

无论如何,这种设计局限于负荷是非常小的应用里;

否则两个实体的接触点将会被磨损掉,从而导致一系列的问题出现。

盘形凸轮的两个另外的变量分别是旋转的从动件和从动件的偏移量,如图6.3所示。

当需要的是旋转的运动时,一个旋转的从动件就会被使用。

关于从动件的偏移量,我们需要注意从动件的偏移量的大小是取决于像压力角和凸轮外轮廓等参数的,这两个参数稍后将会被介绍。

没有偏移量的从动件被称作同轴心的从动件。

传递动力的凸轮:

如图6.4所描绘的被用来传递动力的凸轮。

当凸轮朝着水平的方向传递运动时,从动件会产生上下滑动。

从这里我们可以看出,一个旋转的从动件和一个滑动的从动件都可以被使用。

这种类型的动作通常会被用在一些生产用于凸轮上的产品的专用机床上。

这种设计上的变化在旋转和传输动力的三维的凸轮上体现了出来。

例如,一块手工制造的步枪原料被放在一台专用车床上。

这块原料的形状是要求能够实现以各凸轮所要达到的功能。

当它旋转并传输动力时,从动件就可以控制用来把一块木材加工成生产步枪原料的机床。

主动凸轮:

在上述的凸轮设计中,凸轮和从动件之间在往返运动中保持接触是通过弹簧力的作用来保证的。

无论如何,处于高速运转中的凸轮,用来保持凸轮和从动件之间的接触的弹簧力可能会变得很大,这是由于凸轮在高速运动中的加速度会产生额外的动作用力,接触的位置可能会发生变形。

在这种情况下,接触面可能产生过大的压力,这样将会导致零件过早的被磨损。

主动凸轮是不需要弹簧的,因为从动件被迫在两个方向上与凸轮接触。

这样的主动凸轮可以分为4类:

圆柱形的凸轮,开槽的盘形凸轮(也叫表面凸轮),分型板凸轮,以及共轭凸轮。

圆柱形凸轮:

如图6.5所示,圆柱形凸轮可以使从动件实现不断的往复运动。

图6.6所示的是一个旋转的从动件的应用实例。

通过凸轮上槽沟的设计,我们可以实现使用几个凸轮轴来完成从动件的圆周分布。

开槽的盘形凸轮:

在图6.8上,我们可以看到一个带有旋转的从动件的分型板凸轮,但是这样的设计也可以被用于传递动力的从动件上面。

凸轮E和F一起绕着凸轮轴B旋转。

凸轮E始终保持与滚筒C接触,而凸轮F则一直和滚筒D保持着接触。

滚筒C和滚筒D都被安装在一根直角杠杆上,而这个直角杠杆是绕着点A摆动的从动件。

当凸轮F提供个滚筒D的需要的动作时,凸轮E则被用于给滚筒C提供需要的动作。

共轭凸轮.这种类型的凸轮,正如图表6.9描述的那样,由一个被安装在凸轮轴偏心处的圆凸轮组成。

从动件每次的摆度等于两倍的凸轮的偏心矩e。

这样的凸轮会生产简谐振运动而没有保留时间。

下面更进一步的讨论一下第6.8部分。

计算机辅助制造的专有名词

在我们涉及凸轮的设计之前,我们很有必要知道各种各样被用于鉴别凸轮的重要的设计参数。

看一下下图6.11中的术语。

如果你把凸轮想像成是不动的,而从动件是绕着凸轮转动的,那么,你将更容易理解对凸轮的描述。

轨迹点:

是指尖顶从动件的终点或者辊子中心或者辊子之类的从动件的终点。

凸轮轮廓:

凸轮的实际形状。

基圆:

是指能够画出来的且与凸轮的轮廓线相切的最小的圆。

它的中心也就是凸轮轴的中心。

凸轮轴里的最小的半径就是基圆的半径。

啮合曲线:

假定凸轮是固定不动的,从动件绕着凸轮旋转的,那么,轨迹点的路径就是啮合曲线。

优圆:

优圆是指与啮合曲线相切,且它的中心也在分配轴的中心的圆。

压力角:

压力角是指从动件的运动方向与节圆上辊子的中心所在的点之间的角度。

凸轮外形:

与凸轮轮廓相同。

BDC:

是BottomDeadCenter的缩写,是指从动件离凸轮中心最近的位置。

行程:

是指从动件在BDC和TDC之间走过的路程的长度。

高度上的行程:

是指从动件从BDC转到TDC的时高度的变化值。

返程:

是指从动件从TDC转到BDC时所需时间。

轮廓平行线:

是指当凸轮在转动时,从动件可以和凸轮的中心保持恒定的距离不变的轨迹。

我们可以通过图6.12获得对压力角的意义有一个更清楚、更深刻的理解。

在这里,FT是影响辊子的一个合力。

在任何一个接触点的地方,它一定是与表面垂直的。

FT的方向显而易见不与从动件运动的方向平行。

相反,它时通过压力角α来表明从动件的运动的方向的。

因此,力FT可以被分解为水平方向的力FH和垂直方向的力FV两部分。

垂直分量是向上驱动从动件的那个力,因此,忽略了摩擦力,就等于从动件所受的力。

水平方向的力没有座有用功,但是它仍然是不可或缺的。

事实上,它试图使从动件能够沿着它的方向走。

这样就可能会损坏从动件或者使从动件被卡死。

很明显,我们希望压力角能够尽可能的减小测向力的大小。

一个实际的经验法则是设计凸轮轮廓时,应使压力角的度数不超过30o。

压力角的大小,一般说来,取决于从动件的以下四个参数:

——基圆的大小。

——从动件相对主动件的圆心的偏移量的大小。

——滚筒直径的大小。

——凸轮轮廓平面(取决于使用的从动件运动的从动件行程和类型)。

如果凸轮的要求没有改变,那么前面提到的一些参数就不能被改变。

例如空间的限制。

在我们已经学习过了如何设计凸轮之后,我们将学到减小压力角的各种各样的方法。

普通全钢冲模的冲压精度分析

板料冲压件的精度准确显示出其冲模的冲压精度。

而任何冲件的线性尺寸精度与形位精度主要取决于冲模冲裁和立体成形冲压件展开平毛坯的落料精度。

因此,多工步复合冲压的单工位复合模、多工位连续模的冲压精度,在普通冲压的众多种类与不同结构的冲模中,最具典型性和代表性。

冲模的冲压精度分析:

对冲模投产至失效报废各个时期冲件的实际误差分析,可以看出其增大的时期及趋向,从而分析其增大的因素。

新冲模投产至第一次刃磨前冲制冲件的误差即所谓的初始误差;

冲模经过20次左右刃磨至失效报废前冲制的冲件误差称之为常规误差;

而冲模失效报废前冲制的最后一批合格冲件的允许最大误差称之为极限误差。

在现场,确定冲模刃磨寿命的依据是冲件冲孔与落料的毛刺高度。

由于任何成形件都具有冲裁作业(毛坯落料或冲孔),对于复合模尤为如此。

所以,冲件毛刺高度的触模检查和测量并按企业标准或JB4129-85《冲压件毛刺高度》对照检测就显得十分重要。

冲模的初始误差通常是冲模整个寿命中冲件误差最小的。

其大小主要取决于冲模的制造精度与质量及冲件尺寸、料厚以及间隙值大小与均匀度。

冲模的制造精度及质量又取决于制模工艺。

对于料厚t≤1mm的中碳钢复合冲裁模冲件,实验结果与生产实践都证明,电火花线切割制造的冲模冲件毛刺高度比用成型磨或NC与CNC连续轨迹座标磨即精密磨削工艺制造的冲模冲件要高25%~30%。

这是因为后者不仅加工精度高,而且加工面粗糙度Ra值要比前者小一个数量级,可达到0.025μm。

因此,冲模的制造精度与质量等因素决定了冲模的初始冲压精度,也造就了冲件的初始误差。

冲件的常规误差是冲模经第一次刃磨到最后一次刃磨后冲出最后一个合格冲件为止,冲件实际具有的误差。

随着刃磨次数的增加,刃口的自然磨损而造成的尺寸增量逐渐加大,冲件的误差也随之加大。

当其误差超过极限偏差时,冲件就不合格,冲模也就失效报废。

冲件上孔与内形因凸模磨损尺寸会逐渐变小;

其外形落料尺寸会因凹模磨损而逐渐增大。

所以,冲件上孔与内形按单向正偏差标允差并依接近或几乎等于极限最大尺寸制模。

同理,冲件外形落料按单向负偏差标注允差并依接近或几乎等于极限最小尺寸制模。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿教育 > 育儿理论经验

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2