ATX电源的工作原理与检修文档格式.docx

上传人:b****4 文档编号:7554381 上传时间:2023-05-08 格式:DOCX 页数:52 大小:1.27MB
下载 相关 举报
ATX电源的工作原理与检修文档格式.docx_第1页
第1页 / 共52页
ATX电源的工作原理与检修文档格式.docx_第2页
第2页 / 共52页
ATX电源的工作原理与检修文档格式.docx_第3页
第3页 / 共52页
ATX电源的工作原理与检修文档格式.docx_第4页
第4页 / 共52页
ATX电源的工作原理与检修文档格式.docx_第5页
第5页 / 共52页
ATX电源的工作原理与检修文档格式.docx_第6页
第6页 / 共52页
ATX电源的工作原理与检修文档格式.docx_第7页
第7页 / 共52页
ATX电源的工作原理与检修文档格式.docx_第8页
第8页 / 共52页
ATX电源的工作原理与检修文档格式.docx_第9页
第9页 / 共52页
ATX电源的工作原理与检修文档格式.docx_第10页
第10页 / 共52页
ATX电源的工作原理与检修文档格式.docx_第11页
第11页 / 共52页
ATX电源的工作原理与检修文档格式.docx_第12页
第12页 / 共52页
ATX电源的工作原理与检修文档格式.docx_第13页
第13页 / 共52页
ATX电源的工作原理与检修文档格式.docx_第14页
第14页 / 共52页
ATX电源的工作原理与检修文档格式.docx_第15页
第15页 / 共52页
ATX电源的工作原理与检修文档格式.docx_第16页
第16页 / 共52页
ATX电源的工作原理与检修文档格式.docx_第17页
第17页 / 共52页
ATX电源的工作原理与检修文档格式.docx_第18页
第18页 / 共52页
ATX电源的工作原理与检修文档格式.docx_第19页
第19页 / 共52页
ATX电源的工作原理与检修文档格式.docx_第20页
第20页 / 共52页
亲,该文档总共52页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

ATX电源的工作原理与检修文档格式.docx

《ATX电源的工作原理与检修文档格式.docx》由会员分享,可在线阅读,更多相关《ATX电源的工作原理与检修文档格式.docx(52页珍藏版)》请在冰点文库上搜索。

ATX电源的工作原理与检修文档格式.docx

包括整流和滤波两部分电路,将交流电源进行整流滤波,为开关推挽电路提供纹波较小的直流电压。

3、辅助电源:

辅助电源本身也是一个完整的开关电源。

只要ATX电源一上电,辅助电源便开始工作,输出的两路电压,一路为+5VSB电源,该输出连接到ATX主板的“电源监控部件”,作为它的工作电压,使操作系统可以直接对电源进行管理。

通过此功能,实现远程开机,完成电脑唤醒功能;

另一路输出电压为保护电路、控制电路等电路供电。

4、推挽开关电路:

推挽开关电路是ATX开关电源的主要部分,它把直流电压变换成高频交流电压,并且起着将输出部分与输入电网隔离的作用。

推挽开关管是该部分电路的核心元件,受脉宽调制电路输送的信号作激励驱动信号,当脉宽调制电路因保护电路动作或因本身故障不工作时,推挽开关管因基级无驱动脉冲故不工作,电路处于关闭状态,这种工作方式称作它激工作方式。

5、PWM脉宽调制电路:

PWM(PulesWidthModulation)即脉宽调制电路,其功能是检测输出直流电压,与基准电压比较,进行放大,控制振荡器的脉冲宽度,从而控制推挽开关电路以保持输出电压的稳定,主要由ICTL494及周围元件组成。

6、PS-ON控制电路:

ATX电源最主要的特点就是,它不采用传统的市电开关来控制电源是否工作,而是采用“+5VSB、PS-ON”的组合来实现电源的开启和关闭,只要控制“PS-ON”信号电平的变化,就能控制电源的开启和关闭。

电源中的S-ON控制电路接受PS-ON信号的控制,当“PS-ON”小于1V伏时开启电源,大于4.5伏时关闭电源。

主机箱面上的触发按钮开关(非锁定开关)控制主板的“电源监控部件”的输出状态,同时也可用程序来控制“电源监控件”的输出,如在WIN9X平台下,发出关机指令,使“PS-ON”变为+5V,ATX电源就自动关闭。

7、保护电路:

为了保证安全工作,ATX电源中设置了各种各样的保护电路,当开关电源发生过电压、过电流故障时,保护电路启动,开关电源停止工作以保护负载和电源本身。

8、输出电路:

输入整流滤波电路将交流电源进行整流滤波,为主变换电路提供纹波较小的直流电压。

接插到主板上的排线包含了电源输出的各路电压及控制信号,ATX电源输出排线各脚定义见表1,各路输出的额定电流见表2。

表2ATX电源各路电压的额定输出电流:

(单位:

A)

电源各输出端

+5V

+12V

+3.3V

-5V

-12V

+5VSB

额定输出电流

21A

6A

14A

0.3A

0.8A

表1电源输出排线功能一览表

Pin

1

2

3

4

5

6

7

8

9

10

导线颜色

橘黄

黑色

红色

灰色

紫色

黄色

功能

3.3V提供+3.3V电源

 

3.3V提供+3.3V电源

地线

5V提供+5V电源

5V提供+5V电源

PowerOK电源正常工作

+5VSB提供+5VStandby电源,供电源启动电路用

12V提供+12V电源

11

12

13

14

15

16

17

18

19

20

兰色

绿色

白色

-12V提供-12V电源

PS-ON电源启动信号,低电平-电源开启,高电平-电源关闭

-5V提供-5V电源

9、PW-OK信号的形成:

PW-OK信号(在AT电源中及部分电源板上称P.G信号)为微机开机自检启动信号,为了防止开机时各路输出电路时序不定,CPU或各部件未进入初始化状态造成工作错误及突然停电时,硬盘磁头来不及移至着陆区造成盘片划伤,微机电源中均设置了PW-OK信号。

10、+3.3V电压二次稳压电路:

输出到主板上的+3.3V电压一般为CPU等配件供电,因此,ATX电源在总体自动控制稳压的基础上,在T1的次级+3.3V电压的输出负载网络增设了二次自动稳压控制电路,以使+3.3V输出电压更精确稳定。

纵上所述,接通电源后,220V交流电压经整流滤波电路,输出+300V直流高压。

此电压同时加到推挽开关电路和辅助电源上,因推挽开关电路的开关功率管没有激励脉冲而处于待机状态。

辅助电源一经得到工作电压便开始工作,送出脉宽调制电路、PS-ON控制电路、保护电路的工作电压以及主板的+5VSB待机电压,但因此时没有得到PS-ON主机的控制信号,PS-ON控制电路输出高电平锁住PWM脉宽调制电路使其不起振,此时电源处于待机状态。

按下面板的开机触发开关,PS-ON控制电路得到控制信号,解除对脉宽调制电路的锁定,PWM电路开始工作,输出受控的脉宽可变的交流脉冲推动推挽开关电路中的推挽功率管,并时刻根据输出电压的脉动来调整脉冲宽度,以保证输出电压的稳定。

推挽开关电路中,推挽功率管依次开关,产生的脉动交变电压被开关变压器感应到副级,经输出电路整流滤波,形成主机所需各路电压。

保护电路则监视各路输出电压,当发生过压、欠压故障时及时启动,使PWM电路停止工作,以保证电路及主机的安全。

精密电压基准ICTL431

精密电压基准ICTL431是T0—92封装如图1所示。

其性能是输出压连续可调达36V,工作电流范围宽达0.1。

100mA,动态电阻典型值为0.22欧,输出杂波低。

图2是TL431的典型应用,其中③、②脚两端输出电压V=2.5(R2十R3)V/R3。

如果改变R2的阻值大小,就可以改变输出基准电压大小。

2.综合供电接插件接口不同。

ATX电源采用了20脚长方型双排综合插件向主板供电。

3.输出电压不同。

ATX电源增加了3.3V+5V供电和一个PS-ON控制输入端口,其中3.3V电压主要为CPUPCI总线供电。

4.电源的启动方式不同,ATX电源一般不设市电开关,而采用TL494脉宽控制芯片和LM339比较放大器作为其控制的核心。

其特点是引用TL494第4脚的死区控制功能,当辅助电源工作时,一路输出+5V到主板,另一路输出+12V供给TL494电源,经过该芯片内部稳压电路,由14脚输出+5V,并和1315脚相接,再经分压电路到LM339电压比较器的反向端,其反向端电压约为4.5V.当PS-ON为+5V时,LM339输出为高电平5V,TL494的811脚无输出脉冲,主变换电路截止,电源处于休眠状态。

当PS-ON为0V时,输出为0V,TL494的811脚有输出脉冲,主变换电路开始工作。

因此,我们不仅可以手动按下主机上的触发按钮开关使PS-ON为低电平启动电源,还可以通过程序或键盘等其他方式使PS-ON为低电平启动电源,从而使ATX电源具有远程控制功能。

如图1是ATX电源的电路组成示意图。

ATX电源是一个电压变换和能量供给装置,能量是按电源输入→高压滤波电路→推挽电路→开关变压器→整流电路→输出电路的方向输出的,其中任何一部分电路的功率不达标,都会影响整个电路的输出功率。

对比名牌电源和普通兼容电源,我们发现,市场上销售的兼容电源在高压滤波电路、推挽电路、开关变压器、整流电路、输出电路等部分都和名牌电源有较大的差别,因而,二者的功率和质量存在较大的差距。

其实仅仅从电源的重量对比上就可以猜测出现在标称250W的电源中蕴藏着多少水分,因为重量的减轻意味着电源盒内部元件数量和质量上的偷工减料、散热片重量的减轻、开关变压器和功率开关管的功率下降,以及电源盒外壳铁皮厚度的锐减等。

下面跟我一步一步把兼容电源打摩成"

名牌"

电源。

电源输入电路的打摩

电源的输入电路主要包括保险丝、限流电路、抗干扰电路、过压保护电路,其具体的打摩方法,见<电脑报>第42期的相关文章。

高压整流滤波电路的打摩

整流滤波电路主要由全桥整流器、滤波电容、平衡电阻组成。

经抗干扰滤波器净化后无干扰的220V市电经过全波整流,高压滤波电容滤波后,在高压滤波电容上形成约300V(空载时)的直流电压,用来给电源开关功率管供电。

有的兼价电源中的全桥整流器元件只选用1N4007(1A/1000V),由于电源开机后要对大容量的高压滤波电容充电,1A的额定电流容量显然太小,导致的后果是这种电源常常在开机的瞬间将整流管击穿,选用1N5406(6A/1000V)代换比较可靠。

兼价电源中的高压滤波电容,容量一般为220μF/200V、工作温度为-15棧?

5℃,和品牌电源中的优质电容相比,有一定的差距。

在高压滤波电路中,一般来说,滤波电容的容量越大则滤波效果越好,选用适当容量的滤波电容,可使整流管的导通时间增长而令峰值电流减小,提高可靠性,防烧整流管,同时对电网的干扰也可以减小。

大容量的电容虽有较强大的储存能量能力,但其介质吸收、损耗、漏电量以及失真度会随容量加大而增加,容量过大,反而得不偿失,在品牌电源中,一般采用470μF。

高压滤波电容的耐压一般宜按实际工作电压的2倍选取。

交流电源在全波整流后,输出的直流电压为交流电压值的1.4倍,因此,220V的交流电压整流滤波后的直流电压为300V左右。

因为国内的电压夜间常达到240V以上,入迷的爱好者们也正在此时上网,此时的滤波电压将高达340V以上,此电压是由两个滤波电容串联分担的,因此,选用耐压250V的高压滤波电容串联工作才有保障。

同时为了保证良好的温度系数,选用的电容的工作温度范围要宽。

纵合以上几点,该电容应选市场上常见的470μF/250V,工作温度为-15棧?

5℃的高压滤波电容。

对电源中的高频成分干扰,靠电解电容是难以应付的,因此可以考虑在电解电容上并联一个小容量的高压薄膜电容,可以有效抑制频率高达几兆赫的高频信号。

薄膜电容的种类较多,以MKP(金属聚丙烯)、MKS(聚苯乙烯)性能最为优异,MKS的温度稳定性高,且电参数随频率变化极小,适用于开关电源电路,选用时耐压参数与滤波电容相同。

MKS的缺点是耐热性较差,焊接时要注意边散热边焊接,且每次焊接时间越短越好。

3、开关功率管的打摩

市售兼价的ATX电源中使用的功率管大多为TO-220封装的MJE13007。

该管额定功率70W,耐压400V,电流8A,由于功率和耐压余量小,在实际使用中,因此管损坏引发的故障较多。

实际上,这种功率管由于耐压较高,功率适中,一般用在电子日光灯的电路中。

被厂商"

移花接木"

地用在开关电源中,纯粹是属于"

小马拉大车"

在ATX电路的印刷电路板上一般都留有TO-220和TO-3两种封装管的位置,为了达到额定的功率,可以考虑用其它型号功率较大的功率管替换。

在TO-220封装管中,2SC3822(125W/500V/8A)的性能是较好的,单管功率可达到125W,但此管价格较高,且不易买到,不是首选代换元件。

市场上常见的TO-3形式的封装管中,BU508A(125W/700V/8A),比较容易买到,且价格不高,是比较理想的代换品,用该管代换后,双管推挽额定功率可达到250W,由于现在的PC机所需要的功率也就是100W左右,采用BU508A功率管后的电源具有较大的功率余量,可以较好地应付DIY电脑中添加的种种电脑配件。

图2为TO-3形式封装的BU508A和TO-220封装的MJE13007对比图,从图中可以看出二者的巨大差别。

功率管的额定功率是在一定的散热条件下达到的,因此,在功率管上都安装了大散热片,散热片的质量直接决定了功率管的散热效果。

好的电源使用的散热片应为铝制甚至为铜制,且体积较大,如果散热片的体积太小,晶体管的热量就不容易散发出去,由此导致晶体管不能发挥全额的功率,同时,热量的堆积会导致晶体管工作不稳定甚至烧毁。

为了增大散热片的有效散热面积,散热片都做成梳状,齿越深、分得越开、厚度越大,散热效果越好。

有的优质电源为了加强散热效果,采用了L形的散热片,同时,散热片表面为"

丰"

字形,且打孔,有效地增大了散热片的体积和面积。

劣质电源为了节省成本,使用的散热片小且薄,由于加工粗糙,梳状齿甚至没有冲开,部分电源甚至采用铁制的散热片(图3)。

电源中的功率管是和散热片固定在一起的,替换时,可象图3那样把二者一起焊下,拆下原功率管,再把新换的功率管在散热片上固定好,安装时必须注意功率管与散热片的良好接触,原散热片上的硅脂不要擦掉,如采用BU508A代换,要注意BU508A分全塑封和半塑封两种封装形式,采用后者时,要采取绝缘措施,否则安装后会通过散热片形成电气短路。

为了防止焊接时产生的应力把电路板损坏,要把二者一同安装到电路板上,先焊接固定好散热片,再焊接功率管。

4、开关整流对管的打摩

在ATX电源中,由于开关电源的工作频率相当高,因此,整流用的二极管必须用高速二极管,以提高工作效率,减少发热量,同时,由于输出的电压较低,为了减少电压损耗,应采用肖特基二极管。

在ATX电源中,+5V、+3.3V、+12V的整流管采用的都是肖特基对管,但在兼价电源中,不管输出电流多大,一律采用了MUR1640(16A/40V)整流对管。

通过查看电源的标牌,我们得知,在250W的电源中,其各路输出电压的标称输出电流,+5V为21A、+3.3V为14A、+12V为6A,再加上要考虑到功率要有一定的余额,+5V和+3.3V所用的整流管的电流参数远远不足。

为了保险起见,建议换用MUR3020(30A/20V),肖特基对管安装时也要注意散热问题,要点与开关功率管的散热一致。

图4为整流对管MUR3020和MUR1640的对比图。

5、开关变压器的打摩

ATX电源中,开关变压器负责高、低压能量的转换,其质量好坏和功率的大小,直接关系到电源的整体质量。

兼价电源中的变压器一般个头较小(磁芯小),所用的漆包线也较细,因而功率远远达不到要求。

改装变压器需要找到功率较大的磁芯,使用较粗的漆包线,绕线时也需要特别注意处理好高、低压线圈的绝缘,对工艺要求比较高,业余条件下难以做好,是打摩中的难点,因此有条件的朋友,可以从已损坏的名牌电源中拆下其原装变压器,既方便又具有质量保障。

6、输出滤波电容的打摩

为了滤除开关电源的高频干扰,在ATX电源的输出电路设置了多级LC滤波电路。

兼价电源中,输出滤波电路中的电解电容一般容量较小,可以考虑把电源输出端的所有用于滤波的电解电容,换成同体积的2200微法、耐压不低于25V的电容。

并在每个滤波电容上各并联一只0.1微法~0.22微法、耐压25V左右的薄膜电容,以滤除输出电压中的高频干扰,这对主机部件的超频起着关键性的作用。

7、辅助开关电源的打摩

在ATX电源中,辅助开关电源是一个独立的开关电源,只要ATX电源一上电,辅助电源便开始工作,输出的电压一路用来向电源板提供工作电压,另一路作为+5VSB电压向主机相关电路供电,以便在侍机状态机内主要设备停止工作的情况下维持部分设备工作,实现远程遥控和网络唤醒功能,因此,对辅助电源的质量要求更高。

+5VSB按标准规定输出为5V±

5%,ATX2.03标准从今后的实际应用情况考虑,推荐+5VSB的输出能力可以达到720mA,而Intel的Flex标准则要求输出电流最大可达1.5A或2A,以适应各种不同的需求。

兼价电源中,辅助电源采用的是单管自激振荡开关电路,为了节省成本,开关管一般也采用MJE13007。

由于很难有用户在电脑关机后拔下电源插头,因此只要插上电源插头,该管就一直处于高达300V的高压之下,一旦外界电压再有波动,便有击穿的危险。

建议换用BU508A功率管,可以很好地满足辅助电源大电流和抗高电压冲击的能力。

打摩结束的ATX电源必须在经过检验合格之后,才能上机使用。

由于电源是以+5V输出电压作为基准电压的,在空载的情况下,各输出电压会大大超出其额定值,因此,必须要在+5V端加接功率足够大的负载电阻才能通电,另外,由于ATX电源没有电源开关,通电后,要把电源输出的PS-ON脚(绿色线)和电源地(黑色线)用一个100电阻相联,电源才能正常启动(ATX电源插座管脚功能表见表1,插座管脚示意图见图5),此时,测各路输出电压符合标准,电源打摩才算成功。

ATX电源的输入电路主要由保险丝、交流抗干扰电路、限流电阻、过压保护电路等组成。

长城电源号称具备双重过压保护,其输入电路比较有特色,电路图见图3。

220V交流市电经过电源插座进入电源板上,先经延迟性保险丝(防止开机冲击电流烧坏保险丝)FD1,进入抗干扰滤波电路。

抗干扰滤波电路是由C01、C02和LF1及LF2、C03组成的两级共模滤波器,由于LF采用高导磁率(高μ值)磁芯和分段绕制,电感量较大、分布电容小。

同时两个绕组绕向一致,流过两个绕组中的电流方向(相位)始终相反,因此,对从市电进入的双线对称干扰形成的磁场方向相反而抵消。

而对于非对称性干扰信号来说,共模滤波器亦有很好的抑制作用。

因为对于非对称性干扰信号来说,每个共模滤波器是两个π形低通滤波器,它由线路滤波器LF1、LF2的两个绕组分别和C01、C02、C03组成,由于每个滤波器的电感量较大(0.8—1mH)、分布电容又很小,因此对很宽频率范围内的非对称性干扰有很好的滤波抑制作用。

另外,机内的高频干扰脉冲除了沿电源线向外传导辐射以外,还会通过机内各元件向空间辐射,电路中的CY3、CY4的等效电容和电源盒铁壳(机内地线)相连,这样就可有效地隔离从空间向外辐射的高次谐波,同样对外界的高频干扰也能有效隔离而不会使其进入机内。

电路中的CY是压敏电阻,作过压保护元件。

长城电源在电路中共设了两级过压保护电路,其作用是吸收从外界串入的高幅值的脉冲,当交流输入电压升高,超过了压敏电阻的额定电压值时,压敏电阻导通,产生的大幅值的电流将保险丝FD1烧毁,切断电源与外界交流电网的联系,以保证电源的安全。

判断ATX电源输入电路的好坏,最简单的方法是在断电的情况下,用万用表测试电源的输入端,正常情况下,由于整流滤波电路的影响,万用表呈现充电的状态,阻值由一个比较小的数值慢慢变化到接近∞。

注意有些电源的输入端之间接了一个100K的电阻,此时,测得的最大阻值为该电阻的阻值。

输入电路最主要的故障是由于通过的电流较大,而将相关的保护元件烧毁,此时,电源呈现断路状态,用万用表测电源输入端的阻值为零。

保险丝

保险丝是电子电路中最基本的保护元件,在ATX电源中,保险丝接在输入电路的前端(见图3中的FD1),一般安装在电路板上的插座内,以方便替换。

它的作用就是在输入电流出现异常,超过了保险丝的额定电流时,保险丝及时融断,切断电源与外界交流电源的联系,以防止故障范围进一步扩大,以至于影响到主机内配件的安全。

电路中出现过电流的原因不同,导致保险丝损坏的状况也不一样。

当保险丝出现玻壳爆裂、发黑、发亮等现象时,说明电源中有元件严重短路,产生的大电流导致保险丝在瞬间烧毁,由于在短时间内产生了大量的热,使保险丝在瞬间高温气化,气化的铅在玻壳上形成了一层发黑、发亮的镀层,严重时会使玻壳爆裂;

若保险丝只是在一端熔断,说明保险丝遭受了瞬间大电流脉冲冲击,电路中不一定有元件损坏,也可能是外界电压突然升高,导致输入电流增大所致;

若保险丝在中间部位出现断裂现象,说明电路中有过持续一个阶段的大电流,一般是电路中有元件损坏导致输入电流变大所致。

为了承受开机时较大的冲击电流,ATX电源中的保险丝的熔断电流多选在5~10A左右,而实际上,除了开机时冲击电流较大外,电源实际工作时的最大电流不超过2A。

因此最好采用延迟式保险丝,象用一般彩电上常用的2~3A延迟性保险丝代换,效果比采用的5A左右的普通保险丝效果要得好,参考国外原装机电路,其采用的也是这种保险丝。

延迟性保险丝其玻管内的保险丝大多是螺旋形的,和普通保险丝不同。

限流电阻

在电源的输入电路中,整流电路后的高压滤波电容(图1中的C5、C6)的容量较大(330UF/200U,有的电源中采用470UF/250U),由于开机时要对滤波电容进行充电,会形成很大的冲击电流,常对保险丝和整流部件造成损坏,为避免这种故障的发生,在电源输入电路中一般接有限流电阻THR1。

THR1为负温度系数热敏电阻,在冷态时其阻值较大(6欧),限制开机接通电源瞬间产生的强大冲击电流,当开机大电流流过其上时,电阻变热,其阻值迅速减小,保证电源在正常工作时,消耗在其本身上的功率最小,从而降低了电源的损耗,提高了效率。

当限流电阻的引脚接触不良或因电流过大烧毁时,ATX电源将处于断路状态,通电后机器将没有任何反应,有人以为电源已烧毁,其实用万用表测试一下即知是THR1断路,更换THR1即可。

应注意的是,在许多ATX电源中,省略了该电阻,在电路板上设计有此元件的位置,但被用短路线短路掉了。

有条件的话,应加上这个电阻,以保证电源的安全。

当该热敏电阻损坏时,要选用冷态电阻为6Ω/3W左右的负温度系数的热敏电阻,若实在找不到,可用6Ω/3W的普通水泥电阻代用,只是功耗大了些,但千万不可直接将其短路,以免开机时对相关元件造成大电流冲击;

过压保护电路

ATX电源同普通的AT电源不同,AT电源有电源开关,当断开电源开关后,也同时断开了主机同外界电网的联系。

而ATX电源因为具有远程控制、网络唤醒功能,没有单纯的电源开关,只有主机面板上的电源触发开关,关机后,只是电源的推挽开关电路停止工作,电源的整流滤波电路、辅助开关电源、PS-ON控制电路等仍处于工作状态。

作为家用电脑来说,目前很少有家庭使用网络唤醒功能,由于使用上的习惯,电脑爱好者们在关机后也很少有人想到要拨下电源插头,造成的后果是ATX电源

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 医药卫生 > 基础医学

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2