本科毕业论文板料折弯机设计Word文档下载推荐.docx

上传人:b****4 文档编号:7878262 上传时间:2023-05-09 格式:DOCX 页数:16 大小:80.91KB
下载 相关 举报
本科毕业论文板料折弯机设计Word文档下载推荐.docx_第1页
第1页 / 共16页
本科毕业论文板料折弯机设计Word文档下载推荐.docx_第2页
第2页 / 共16页
本科毕业论文板料折弯机设计Word文档下载推荐.docx_第3页
第3页 / 共16页
本科毕业论文板料折弯机设计Word文档下载推荐.docx_第4页
第4页 / 共16页
本科毕业论文板料折弯机设计Word文档下载推荐.docx_第5页
第5页 / 共16页
本科毕业论文板料折弯机设计Word文档下载推荐.docx_第6页
第6页 / 共16页
本科毕业论文板料折弯机设计Word文档下载推荐.docx_第7页
第7页 / 共16页
本科毕业论文板料折弯机设计Word文档下载推荐.docx_第8页
第8页 / 共16页
本科毕业论文板料折弯机设计Word文档下载推荐.docx_第9页
第9页 / 共16页
本科毕业论文板料折弯机设计Word文档下载推荐.docx_第10页
第10页 / 共16页
本科毕业论文板料折弯机设计Word文档下载推荐.docx_第11页
第11页 / 共16页
本科毕业论文板料折弯机设计Word文档下载推荐.docx_第12页
第12页 / 共16页
本科毕业论文板料折弯机设计Word文档下载推荐.docx_第13页
第13页 / 共16页
本科毕业论文板料折弯机设计Word文档下载推荐.docx_第14页
第14页 / 共16页
本科毕业论文板料折弯机设计Word文档下载推荐.docx_第15页
第15页 / 共16页
本科毕业论文板料折弯机设计Word文档下载推荐.docx_第16页
第16页 / 共16页
亲,该文档总共16页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

本科毕业论文板料折弯机设计Word文档下载推荐.docx

《本科毕业论文板料折弯机设计Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《本科毕业论文板料折弯机设计Word文档下载推荐.docx(16页珍藏版)》请在冰点文库上搜索。

本科毕业论文板料折弯机设计Word文档下载推荐.docx

在一台普通折弯机上对一个多弯零件进行折弯时,首先对整批零件进行第一道的折弯,然后依次进行以下各道折弯。

这样需要足够的堆放场地,繁重的搬运工作。

如果拥有几台折弯机,可以在每台折弯上进行一道折弯,则又需要占用几台折弯机和几名工人,并在第一个零件完成全部折弯工序以前,整批零件都积压在加工过程中。

数控折弯机完全改变了这种生产面貌。

根据设定的程序,折弯机自动调整滑块行程和后挡料位置,并设定时间,一个零件的全部折弯工序自动连续进行。

并且数控折弯机都有角度直接编程功能,只要输入几个数据,经过一次试折和修正,即可完成调整工作,不需要技术熟练的工人。

而在普通折弯机上需要凭经验经过几次试折。

因此,使用数控折弯机的加工成本,可比普通折弯机节约20%~70%,经济效果十分显

著。

设计依据:

序号

名称

参数

备注

1

公称力:

5000KN

2

工作台长度

4000mm

3

工作台宽度

400mm

4

喉口深度:

5

滑块行程

320mm

6

立柱间距离

3300mm

7

数控轴数

基本轴:

Y1,Y2

其余轴可任意组合

X1,X2,Z1,Z2,R1,

R2,V

8

工作台面与滑块间最大开启高度

630mm

9

机器外形尺寸

4225mmx3710mmx4350mr

10

油缸快下速度

71.7mm/s

11

油缸工进速度

6mm/S

12

油缸回程速度

46mm/S

13

滑块空载行程次数「

3次/分钟

14

最大工作压力

25MPa

15

主电机功率

30Kw

16

重量

36000Kg

17

墙板厚度

S110mm

18

工作台厚度x宽度

S100x400

19

工作台主板厚度—

S110

20

滑块厚度

二、设计计算步骤

(一)液压计算说明

1.选型

(1)调速回路选择

①旁路节流阀调速回路

如图所示,这种回路是把节流阀接在与执行元件并联的旁油路上。

通过调节节

流阀的通流面积,来控制泵溢回油箱的流量,即可实现调速。

由于溢流已由节流阀承担,故溢流阀实为安全阀,常态时关闭,过载时打开,其调定压力为最大工作压力的1.1〜

1.2倍,故泵工作过程中的压力随负载而变化。

②回油节流阀调速回路

 

如图所示,将节流阀串接在缸的回油路上,即构成回油节流阀调速回路(泵的出口压力恒定)。

用节流阀调节缸的回油流量,实现调速。

③进油节流阀调速回路

将节流阀串联在泵与缸之间,即构成进油节流阀调速回路(见图)。

泵输出的油液

一部分经节流阀进入缸的工作腔,泵多余的油液经溢流阀回油箱。

由于溢流阀有溢流,泵的出口压力Pp保持恒定。

调节节流阀通流面积,即可改变通过节流阀的流量,从而调节缸的速度

■■1

L1

<

-

UJ

A

可见,进油节流阀调速加路适用于轻载、低速、负载变化不大和对速度稳定性要求不高的小功率场合。

进油节流调速回路使用普遍,但由于执行元件的回油不受限制,所以不宜用在超越负载(负载力方向与运动方向相同)的场合•阀应安装在液压执行元件的进油路上,多用于轻载、低速场合。

对速度稳定性要求不高时,可采用节流阀;

对速度稳定性要求较高时,应采用调速阀。

该回路效率低,功率损失大。

采用双单向节流阀,双方向均可实现进油节流调速。

上述两种回路(即回油节流阀调速回路和进油节流调速回路)的不同之处:

a.回油节流阀调节回路的节流阀使缸的回油腔形成一定的背压(p2工0),因而能承受负值负载,并提高了缸的速度平稳性。

b.进油节流阀调速回路容易实现压力控制。

因当工作部件在行程终点碰到死挡铁后,缸的进油腔油压会上升到等于泵压,利用这个压力变化,可使并联于此处的压力继电器发讯,对系统的下步动作实现控制。

而在回油节流阀调速进,进油腔压力没有变化,不易实现压力控制。

虽然工作部件碰到死挡铁后,缸的回油腔压力下降为零,可利用这个变化值使压力继电器失压发讯,对系统的下步动作实现控制,但可靠性差,一般不采用。

c.若回路使用单杆缸,无杆腔进油流量大于有杆腔回油流量。

故在缸径、缸速相同的情况下,进油节流阀调速回路的节流阀开口较大,低速时不易堵塞。

因此,进油节流阀调速回路能获得更低的稳定速度。

d.长期停车后缸内油液会流回油箱,当泵重新向缸供油时,在回油节流阀调速回路中,由于进油路上没有节流阀控制流量,会使活塞前冲;

而在进油节流阀调速回路中,活塞前冲很小,甚至没有前冲。

e.发热及泄漏对进油节流阀调速的影响均大于回油节流阀调速。

因为进油节流阀调速回路中,经节流阀发热后的油液直接进入缸的进油腔;

而在回油节流阀调速回路中,经节流阀发热后的油液直接流回油箱冷却。

根据以上分析,采用进油节流阀调速回路比较合适。

(2)液压控制阀的选择

①选阀种类

a.液控单向阀

液控单向阀按结构特点可分为简式和卸载式两类。

卸载式的特点是带有卸载阀,当控制活塞上移时先顶开卸载阀的小阀芯3,使主油路卸压,然后再顶开单向阀芯。

这样可大大减小控制压力,使控制压力与工作压力之比降低到4.5%,因此可用于压力较高的场合。

液控单向阀,亦可称作单向闭锁阀保压阀等。

它用于液压系统中,阻止油流反向流动,起到一般单向阀的作用;

但可利用控制压力油,通过控制活塞打开单向阀芯,使油流实现反向流动。

液控单向阀可用在需要严格封闭的油路中,进行单位向闭锁,起到保压作用。

b.机动换向阀

机动换向阀用来控制机械运动部件的行程,故又称行程换向阀。

它利用档铁或凸轮推动阀芯实现换向。

当挡铁(或凸轮)运动速度v—定时,可通过改变挡铁斜面角度a来改变换向时阀芯移动速度,调节换向过程的快慢。

机动换向阀通常是二位的,有二通、三通、四通、五通几种。

其中二通的又分常闭式和常开式两种。

c.电液动换向阀

电液动换向阀由电磁换向阀和液动换向阀组合而成。

其中电磁换向阀起先导作用,用来改变控制液流的方向,从而改变起主阀作用的液动换向阀的工作位置。

d.调速阀

MSA型调速阀的流量由手柄在120°

范围内进行调节,流量调好后,手柄位置可被锁紧旋钮固定,流量值从刻度盘上显示。

减压阀可以选择是否带行程调节器。

e.普通单向阀

普通单向阀的作用是使液体只能沿一个方向流动,不许它反向倒流。

对单向阀的要求主要有:

i.通过液流时压力损失要小,而反向截止时密圭寸性要好;

ii.动作灵敏,

工作时无撞击和噪声。

该阀在这次设计中被使用。

f.换向阀

换向阀是借助于阀芯与阀体之间的相对运动,使与阀体相连的各油路实现接通、切断,或改变液流的方向的阀类。

对换向阀的基本要求是:

a.液流通过阀时压力损失小(一般厶p?

0.1〜0.3MPa);

b.互不相通的油口间的泄漏小;

c.换向可靠、迅速且平稳无冲击。

g.电磁换向阀

电磁换向阀是利用电磁铁吸力推动阀芯来改变阀的工作位置。

由于它可借助于按钮

开关、行程开关、限位开关、压力继电器等发出的信号进行控制,所以易于实现动作转换的自动化。

h.先导式溢流阀

DB型阀是先导控制式的溢流阀,用来控制液压系统的压力;

DBW型阀是先导控制式的电磁溢流阀,除控制液压系统的压力外,还能在任意时刻使系统卸荷。

I.起安全阀作用(防止液压系统过载)

II.起溢流阀作用(维持液压系统压力恒定)

III.使液压系统卸荷

②选阀型号

规格

数量

冲液阀

PF-48-A2-F

2丁

溢流阀

CVA25-H

单向阀

CA6-H

直入式插装溢流阀

CLEB-4020

叠加型溢流阀

MBP-03B-H

MBP-03H-H

电磁换向阀

D5-02-2B10A-D25

D5-02-2B40B-D25

D5-02-2B8A-D25

21

D5-03-2B2-D25

电液比例先导溢流阀

EDG-01-H-V

(3)泵的选择

1选泵的种类

a.齿轮泵

I.外啮合式齿轮泵

当齿轮旋转时,在A腔,由于轮齿脱开使窖逐渐增大,形成真空从油箱吸油,随着齿轮的旋转充满在齿槽内的油被带到B腔,在B腔,由于轮齿啮合,容积逐渐减小,把液压油排出。

利用齿和泵壳形成的封闭容积的变化,完成泵的功能,不需要配流装置,不能变量。

结构最简单、价格低、径向载荷大。

II.内啮合式齿轮泵

当传动轴带动外齿轮旋转时,与此相啮合的内齿轮也随着旋转。

吸油腔由于轮齿脱开而吸油,经隔板后,油液进入压油腔,压油腔由于轮齿啮合而排油。

典型的内啮合齿轮泵主要有内齿轮、外齿轮及隔板等组成。

利用齿和齿圈形成的容积变化,完成泵的功能。

在轴对称位置上布置有吸、排油口。

不能变量。

尺寸比外啮式略小,价格比外啮合式略高,径向载荷大。

i.流量、压力的脉动小。

ii.噪声低。

iii.轮齿接触应力小,磨损小,因而寿命长。

iv.主要零件的加工难度大,成本高,价格比外啮合齿轮泵贵。

b.叶片泵

利用插入转子槽内的叶片间容积变化,完成泵的作用。

在轴对称位置上布置有两组吸油口和排油口。

径向载荷小,噪声较低流量脉动小。

c.轴向柱塞泵

柱塞泵由缸体与柱塞构成,柱塞在缸体内作往复运动,在工作容积增大时吸油,工作容积减小时排油。

采用端面配油。

径向载荷由缸体外周的大轴承所平衡,以限制缸体的倾斜。

利用配流盘配流。

传动轴只传递转矩、轴径较小。

由于存在缸体的倾斜力矩,制造精度要求较高,否则易损坏配流盘。

该设计采用轴向柱塞泵。

2选泵的型号

轴向柱塞泵的型号:

63MCY14-1B;

压力:

31.5MPa;

排量:

63ml/r

(4)管接头的选择

1卡套式管接头

利用卡套变形卡住管子并进行密封,结构先进,性能良好,重量轻,体积小,使用方便,广泛应用于液压系统中。

工作压力可达31.5MPa,要求管子尺寸精度高,需用冷拔钢管。

卡套精度亦高。

适用于油、气及一般腐蚀性介质的管路系统。

2焊接式管接头。

利用接管与管子焊接。

接头体和接管之间用0形密封圈端面密封。

结构简单,易制造,密封性好,对管子尺寸精度要求不高。

要求焊接质量高,装拆不便。

工作压力可达31.5MPa,工作温度一25C〜80C,适用于以油为介质的管路系统。

该管接头用于此次设计中。

(5)液压缸的选择

①液压缸的种类

a.活塞式液压缸

活塞仅能单向运动,其反向运动需由外力来完成。

b.伸缩式液压缸

有多个依次运动的活塞,各活塞逐次运动时,其输出速度和输出力均是变化的。

C.柱塞式液压缸

但其行程一般较活塞式液压缸大本设计应用了该种形式的液压缸。

②液压缸的规格及计算过程

a.要求:

I.单只油缸吨位为250T

II.滑块行程400mm

III.慢下速度5mm/s

b.计算步骤:

I.油缸直径计算

D=1.129F/P=1.129,250104/25=357mm

圆整后取:

D=360mm

校验在D=360mm的系统压力为:

p=F/S二25021025.56MPa

360n/4

•••满足要求

II.确定活塞杆直径液压缸的上下面积比根据BOSCH液压系统的特性选取,一般取8-10位最佳,初步选定面积比id=8:

1,得

d二..7D2/8=336.75mm

圆整后取d=340mm

校验得:

I:

D0

二D。

•故满足要求

III.油缸中段壁厚的确定

受力分析如下:

又因为材料为锻钢,故根据第四强度理论得知:

-1-1.732Py

L」-;

「b/n=600/5=120N/m2

Pn=25.56MPa

Py=1.25Pn=31.95MPa

代入数据得:

-,■:

:

、:

65.21mm

考虑结构,圆整为:

=70mm速度及流量计算

■/V慢下=5mm/s

2兀D2

S上1017.88cm

Qv=S上V慢下>

2=1.02l/S

Q总=1.02>

0=61.2l/min

故选用125ml/r的泵,电机转速1000r/min

Q泵=125l/min>

61.2l/min满足要求

IV.快下速度计算

•••G=6.89,则油缸下腔静压为310N/mm2

6.89x104

22

2二(360-340)/4

Q回=1002曲57^in

•V快下=Q/SF=71.7mm/s

校核:

当Q回=94.57l/min时,Q吸>8.6=813.3l/min,但根据BOSCH阀块的最大充油特性可知:

Q吸max=700l/min

可知:

Q吸max=Q阀max+125/2=762.5l/min

故快下速度此时应根据上腔最大吸油量决定,应在回油管路装单向顺序阀来满足要求

即:

V快下Q吸max/S上二2-124.85mm/s

360兀/4

170200370

t总=上快+t慢+t回+1.51.5:

51s

124.85546

•••满足每分钟1次的要求

2.功率计算

P泵=Pq=25.56X61.2/60〜26.58KW

P需=FV=50X0.05=25KW

•P泵〉P需,故功率满足要求

选用Y225M-6B5960r/min的电机30KW

(二)机械计算说明

1.工作台强度校核

(1)所用公式:

BH3-bh3

I=

...BH3_bh3

Wz=6H

y(x)均布=ql4(5-24;

2)/384EIz

B=40cmH=170cmh=150cmb=29cm

惯性矩:

3333

iBH-bh40170-291504

Iz===8220417cm

1212

均布载何:

F5001032

q=1250N/mm

L400

F:

本机公称力0.5X0N

L:

工作台总长400cm

pleasecontactQ3053703061giveyoumoreperfectdrawings

三、设计收获与体会

这次所设计的WE67K-500/4000液压板料折弯机是在原有半自动板料折弯机的基础上进行改进,使其成为一种产品精度和工作效率高、性能可靠、操作简便、通用性好的板料弯曲设备之一,得到更广泛的应用。

这次主要在三个部分做了改进:

(一)液压部分

液压部分是本次改进的重点,本产品采用的电液同步技术,性能可靠,即使在偏载力的作用下,仍能保证较高的同步精度。

(二)机械部分

机械部分主要是在下模安装了扰度补偿机构,以保证获得较高的折弯精度。

用户只需配备不同的模具,就能将金属板料折弯成不同形状的工件。

(三)电气部分

电气部分采用了CNC数控系统,可根据不同的厚度、不同的开口计算出折弯力并给予控制。

直观、精确、统一。

以上三方面难点多、工作量大,对于我来说是前所未有的挑战,在指导老师的帮助下,通过自己的努力,最终还是完成了设计任务。

经过这几个月的时间,我学到了很多东西,也更清楚了知识是需要融会贯通和积累的,培养了对机械设计的兴趣,初步掌握了设计的基本步骤。

这些将对我在以后的工作中有很大的帮助,我也充分认识到只有通过不断的学习、大量的实践、深刻的反思,总结和再学习,才能成长成为一个真正的合格的机械设计工作者。

四、参考文献

1.徐灏主编•《机械设计手册》第2版.机械工业出版社,2000年

2.华中理要大学何存兴、张铁华主编.

《液压传动与气压传动》第2版.华中科技大学出版社,2000年

3.上海化工学院、无锡轻工业学院编.由陈维新主编.

《工程力学》上册.高等教育出版社,1978年

4.南京工学工院杨可桢、程光蕴主编.

《机械设计基础》第4版本.高等教育出版社,1998年

5.东南大学机械学学科组郑文纬,吴克坚主编.

机械原理.第7版.北京:

高等教育出版社,1997

6.孙恒,陈作模主编.机械原理.第5版.北京:

高等教育出版社,1996

7.机械工业部洛阳轴承研究所编.全国滚动轴承产品样本,1995

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 自然科学 > 物理

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2