完整版列管式换热器设计Word文件下载.docx

上传人:b****4 文档编号:7953714 上传时间:2023-05-09 格式:DOCX 页数:23 大小:87.58KB
下载 相关 举报
完整版列管式换热器设计Word文件下载.docx_第1页
第1页 / 共23页
完整版列管式换热器设计Word文件下载.docx_第2页
第2页 / 共23页
完整版列管式换热器设计Word文件下载.docx_第3页
第3页 / 共23页
完整版列管式换热器设计Word文件下载.docx_第4页
第4页 / 共23页
完整版列管式换热器设计Word文件下载.docx_第5页
第5页 / 共23页
完整版列管式换热器设计Word文件下载.docx_第6页
第6页 / 共23页
完整版列管式换热器设计Word文件下载.docx_第7页
第7页 / 共23页
完整版列管式换热器设计Word文件下载.docx_第8页
第8页 / 共23页
完整版列管式换热器设计Word文件下载.docx_第9页
第9页 / 共23页
完整版列管式换热器设计Word文件下载.docx_第10页
第10页 / 共23页
完整版列管式换热器设计Word文件下载.docx_第11页
第11页 / 共23页
完整版列管式换热器设计Word文件下载.docx_第12页
第12页 / 共23页
完整版列管式换热器设计Word文件下载.docx_第13页
第13页 / 共23页
完整版列管式换热器设计Word文件下载.docx_第14页
第14页 / 共23页
完整版列管式换热器设计Word文件下载.docx_第15页
第15页 / 共23页
完整版列管式换热器设计Word文件下载.docx_第16页
第16页 / 共23页
完整版列管式换热器设计Word文件下载.docx_第17页
第17页 / 共23页
完整版列管式换热器设计Word文件下载.docx_第18页
第18页 / 共23页
完整版列管式换热器设计Word文件下载.docx_第19页
第19页 / 共23页
完整版列管式换热器设计Word文件下载.docx_第20页
第20页 / 共23页
亲,该文档总共23页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

完整版列管式换热器设计Word文件下载.docx

《完整版列管式换热器设计Word文件下载.docx》由会员分享,可在线阅读,更多相关《完整版列管式换热器设计Word文件下载.docx(23页珍藏版)》请在冰点文库上搜索。

完整版列管式换热器设计Word文件下载.docx

在低R值(艮〉100)下即可达到湍流,以提高对流传热系数。

对于刚性结构的换热器,若两流体的温差较大,对流传热系数较大者易走管间,因壁

面温度与a大的流体温度相近,可以减少热应力。

1.4流体流速的选择

增加流体在换热器中的流速,将加大对流换热系数,减少污垢在管子表面上沉积的可能性,即降低了污垢热阻,使传热系数增大,动力消耗就增多。

所以适宜的流速要通过经济衡算才能确定。

此外,在选择流速时,还要考虑结构上的要求。

例如,选择高的流速,使管子数目减少,对一定的换热面积,不得不采用较长的管子或增加程数。

管子太长不易清洗,且一般管长都有一定的标准;

单程变成多程使平均温度降下来。

这些也是选择流速时应考虑的问题。

表1-1至表1-3列出了常用的流速范围,可供设计参考。

所选的流速,应尽可能避免在滞流下流动。

表1-1常用的流速范围

Table1-1Thescopeofcommonuseincurrentvelocity

流体种类

般流体

易结垢液体

气体

管程流速m/s

0.5〜3

>

1

5〜30

壳程流速m/s

0.2〜1.5

0.5

3〜15

表1-2安全允许速度

 

Table1-2Thespeedofthesafeadmissionoftheliquid

液体名称

乙醚、二硫化碳、苯

甲醇、乙醇、汽油

丙酮

安全允许速度/m/s

V1

V2〜1.5

V10

表1-3不同粘度液体的常用流速

Table1-3Thedifferentoftheliquidincommonusecurrentvelocity

液体粘度/mPa.s

1500

1500〜500

500〜100

100〜35

35〜1

最大流速/m/s

0.6

0.75

1.1

1.5

1.8

2.4

1.5确定设计方案的原则

1.5.1满足工艺和操作的要求。

设计出的流程和设备首先要保证质量,操作稳定,这就必须配置必要的阀门和计量仪表等,并在确定方案时,考虑到各种流体的流量,温度和压强变化时采取什么措施来调节,而在设备发生故障时,检修应方便。

1.5.2满足经济上的要求。

在确定某些操作指标和选定设备型式以及仪表配置时,要有经济核算的观点,既能满足工艺和操作要求,又使施工建简便,材料来源容易,造价低廉。

如过有废热可以利用,要尽量节省热能,充分利用,或者采取适当的措施达到降低成本的目的。

1.5.3保证安全。

在工艺流程和操作中若有爆炸,燃烧、中毒、烫伤等危险性,就要考虑必要的安全措施。

又如设备的材料强度的验算,除按规定应有一定的安全系数外,还应考虑防止由于设备中压力突然升高或者造成真空而需要装置安全阀等。

以上所提的都是为了保证安全生产所需要的。

第二章列管式换热器热力计算

2.1稳态传热

稳态传热的基本方程式为:

Q=KA△tm

Q热负荷,W;

K总传热系数,W/m2?

°

C;

A换热器总传热面积,m2;

△tm进行换热的两流体之间的平均温度,C。

2.1.1热负荷当忽略换热器对周围环境的散热损失时,根据能量平衡,热流体所放出的热量应等于冷流体所吸收的热量,即

Q=Wh(Hh1-Hh2)=Wc(Hc2-Hc1)

(2)

式中

Q换热器的热负荷,kJ/h或W;

W流体的质量流量,kg/h;

H单位质量流体的焓,kJ/kg;

下标c,h分别表示冷流体和热流体,下标1和2表示换热器的进出口。

若换热器中两流体无相变化,且流体的比热容不随温度而变或可取平均温度下的比热容时,即

Q=WhCph(T1-T2)=WcCpc(t2-t1)

Cp流体的平均比热容,kJ/(kg?

C);

t冷流体的温度,C;

T热流体的温度,C。

若换热器中有热流体的相变化,即

Q=Wh丫=WcCpc(t2-tl)

Wh饱和蒸气(即热流体)的冷凝速率,kg/h;

1)

3)

饱和蒸气的冷凝热,kJ/kg。

2.1.2总传热系数

(1)总传热系数的计算式

两流体通过管壁的传热包括以下过程[4]。

a.热流体在流动过程中把热量传给管壁的对流热。

b.通过管壁的热传导。

c.管壁与流动中的冷流体之间的对流传热。

d.换热器在实际操作中,传热表面上常有污垢积存,对传热产生附加热阻,使总传热系数降低。

在估算K值时一般不能忽略污垢热阻。

由于污垢层的厚度及导热系数难以准确地估计,因此通常选用污垢热阻的经验值,作为计算K值的依据,若管壁内、外侧表面的污垢热阻分别用Rsi及Rso表示。

1/K=1/a+do/adi+Rso+Rsido/di+bdo/入dm(5)

其中

a管外流体传热膜系数,w/m2;

a管内流体传热膜系数,w/m2C;

Rsi、Rso管壁内、外侧表面的污垢热阻,m2C/w;

di、do、dm管内径、外径和内、外径的平均直径,m;

b管子壁厚,mm;

入管壁材料的导热系数,w/m2C;

2.1.3平均温度

变温传热时,若两流体的相互流向不同,则对温度差的影响也不同,通常逆流传热效

果好,

以逆流为列,推导出计算平均温度的通式。

△tm=(Atl+At2)/2

△tl=T1-t2

At2=T2-t1

(6)

T1,T2

热流体的进出口温度,C;

t1,t2

冷流体的进出口温度,C;

Atm=①AtAtm

(7)

Atm

按逆流计算时的平均温度差,C;

OAt温度差校正系数,无量纲;

温度差校正系数①△t与冷热流体的温度变化与关,是P和R两因素的函数,即

OAt=f(P,R)

式中P=(t2-ti)/(T1-ti)=冷流体温升/两流体的最初温度差

R=(T2-Ti)/(t2-tl)=热流体的温降於流体的温升

温度校正系数①At值可根据P和R两因素从相应的图中查得温度差校正系数图是基于以下假设作出的。

壳程任一截面上流体温度均匀一致。

(1)管方各程传热面积相等。

(2)总传热系数K和流体比热容Cp为常数。

(3)流体无相变化。

(4)换热器的热损失可以忽略不计。

2.2对流传热膜系数

无相变对流传热的传热膜系数

2.2.1管内传热膜系数

对低黏度流体,Re>

10000,0.7<

Prv120,L/d>

60时a=0.023入i/diRei0'

8Pr「(8)

加热n取0.4;

冷却n取0.3

2.2.2管外传热膜系数

a=0.36(入/ddRei0.55Pri1/3(卩/W)T(9)

Re=2X103〜1x106有相变对流传热的传热膜系数[5]

蒸汽在水平管外冷凝ao=1.163X0.945(疋p2g/fGg/)1/3(10)

2.3流体压强降的计算

2.3.1管程流动阻力

管程阻力可按一般摩擦阻力公式求得。

对于多程换热器,其总阻力XAiP等于直管阻力、

AP阻力及进、出口阻力之和。

一般进、出口阻力可忽略不计,故管程阻力的计算式为

AP1、AP2分别为直管及回弯管中因摩擦阻力引起的压强降,Pa;

Ft结垢校正因数,无量纲,对①2X2.5mm的管子,取1.4,对①19X2mm

的管子,取1.5;

Np管程数;

2

AP二入(L/d)X(pu/2)

AP=3pu/2

2.3.2壳程流动阻力

现已提出的壳程流动阻力的计算公式虽然较多,但是由于流体的流动状况比较复杂,

因此使计算得到的结果相差很多。

下面壳程压强降APo的公式,即

XAPo=(APi+AP2)FsNS

12)

13)

14)

管子按正方形排列nc=1.19Xn1/2

折流挡板间距,m;

u0

按壳程流通截面积Ao计算的流速,m/s,而Ao=H(Dmd°

般来说,液体流经换热器的压强降为10〜100kPa,气体的为1〜10kPa。

第三章工艺流程

汽提塔(E101)底部的溶液经减压阀LC9202减压到1.76Mpa进入中压分解分离器

(V102),溶液在此闪蒸并分解,分离后尿液进入中压分解塔(E102A/B),甲铵在此分解E102A壳体用0.5Mpa蒸汽供热,E102B用汽提塔蒸汽冷凝液分离器(V109)的2.5Mpa蒸汽冷凝供热。

从中压分解塔分离器顶部出来的含有氨和二氧化碳的气体先送到真空预浓缩器

(E104)壳程中,被中压碳铵液泵(P103A/B)送来的碳铵液吸收,其吸收和冷凝热用来蒸发尿液中的部分水份,然后进入中压冷凝器(E106)用冷却水冷却,最终进入中压吸收塔(C101)。

中压吸收塔为泡罩塔,它用氨升泵(P105A/B)来的液氨和氨水泵(P107A/B)送来的氨水共同洗涤二氧化碳。

中压吸收塔顶部含有微量惰性气氨进入氨冷器(E109)冷凝成液

氨,收集于氨收集器(V105),不凝气通过氨回收塔(C105)进入中压惰性气体洗涤塔

(C103)。

惰性气体放空,其吸收热通过中压氨吸收塔(E111)用冷却水带走,氨水通过氨水泵(P107A/B)被送到中压吸收塔。

中压吸收塔底部溶液通过高压甲铵泵(P102A/B)加压到15.5Mpa送到甲铵冷凝器

(E105),返回合成圈。

这里所做的换热器设计就是对中压吸收塔出来的气氨进行冷凝成液氨的设备进行设计计算,以下是氨冷凝器所在工艺流程中的位置(见附图3-1)。

第四章换热器工艺过程计算

4.1设计任务和条件

物料:

NH、循环水等。

其中循环水走管程。

工艺条件:

壳程:

操作压力:

1.62MPa温度43C〜38C(入/出)

管程:

0.4MPa温度32C〜36C(入/出)

其中:

NH:

流量:

580m3/h密度13Kg/m3

4.2设计过程

列管式换热器的选型和设计计算步骤

4.2.1试算并初选设备规格

(1)确定流体在换热器中的流动途径。

(2)根据传热任务计算热负荷Q。

(3)确定流体在换热器两端的温度,选择列管换热器的形式;

计算定性温度,并确定在定性温度下的流体物性。

(4)计算平均温度差,并根据温度差校正系数不应小于0.8的原则,决定壳程数。

(5)依据总传热系数的经验值范围,或按生产实际情况,选定总传热系数K值。

(6)由总传热速率方程Q=KS\tm,初步算出传热面积S,并确定换热器的基本尺寸(如

d、L、n及管子在管板上的排列等),或按系列标准选择设备规格。

4.2.2计算管程、壳程压强降

根据初定的设备规格,计算壳程、管程流体的流速和压强降。

检查计算结果是否合理或满足工艺要求。

若压强降不符合要求,要调整流速,再确定管程数或折流板间距,或选择另一规格的换热器,重新计算压强降直至满足要求为止。

4.2.3核算总传热系数

计算管程、壳程对流传热系数,确定污垢热阻RSi和RSo,再计算总传热系数比较K

的初设值和计算值,若K/K=1.15〜1.25或(K-K)/K=15.5%〜30%则初选的换热器合

适。

否则需另设K值,重复以上计算步骤⑹。

4.3工艺计算过程

4.3.1定性温度下流体物性

p=13kg/m3卩=0.918X10-5Pas入=0.0215W/M・°

C丫=1373kJ/kg

Cp=0.67kJ/kgC循环水:

p=995.7kg/m3

V=580m3/h

-5

卩=80.07X10-5Pas入=0.6176W/MC

Cp=4.174kJ/kg液氨:

pf=583kg/m3g=12.7X107

C

入f=0.432kcal/mhC卩f=0.306kg/mh

本设计中涉及到氨的相变化传热过程,根据两流体的情况,循环水走管程,氨走壳程进行计算。

4.3.2试算和初选换热器的型号

⑴计算热负荷和冷却水流量Q=Qi(显热)+Q*潜热)

Qi=WCp(Ti-T2)=VpCp(Ti-T2)=(580X13/3600)X0.67X103x(43-38)=7016.4w

Q2=W丫=Vpy=(580X13/3600)X1373X103=2875672.2w

Q=Q1+Q2=7016.4+2875672.2=2882688.6w

WH20=Q/CpAt=2882688.6/(4.174X103X(36-32))=172.657kg/s

VH2O=WH20/p=172.657/995.7=0.173m3/s

(2)计算两流体的平均温度差暂按单壳程、多管程进行计算。

逆流时平均温度差为

NH43C—38C

水36C・32C

At7C6C

Atm=(At1+At2)/2=6.5C

而R=(T1-T2)/(t2-t1)=1.25P=(t2-t1)/(T1-t1)=0.364

由P、R值查图4—17查得①At=0.92

所以Atm=OAtXAtm‘=0.92X6.5=5.98C

(3)初选换热器型号

根据两流体的情况,假设K=1100W/MC

故S=Q/KXA怙=2882688.6/1100/5.98=438.2帚

由于Tm-tm=5-4=lCv50r因此不需要考虑热补偿。

据此,由换热器系列标准,有关

参数如下表4-1:

表4-1换热器系列标准

Tab.4-1Heatexchangeisrelatedtodata

参数

壳径D/mm

1000

公称面积S0/m

446.2

公称压强/MPa

1.62

管子尺寸/mm

①19X2

管子总数

1267

管长/m

6

管子排列方法

三角形

管程数

1

实际传热面积So=nndL=1267X3.14X0.019X(6-0.1)=446m2。

若采用此换热面积的换热器,则要求过程的总传热系数为1100W/MC。

4.3.3核算压强降

(1)管程压强降

EAP=(AR+AP)FtN

其中Ft=1.5Np=1

222

管程流通面积A=(n/4)din/Np=0.785X0.015X1267/2=0.2239m

ui=VS/Ai=0.173/0.2239=0.8m/s

5

Re=diUp/卩=0.019X0.8X995.7/(80.07X10-)=14922.4

设管壁粗糙度&

=0.1mm,&

/d=0.1/15=0.0067,由第一章中的入-Re关系图中查得

入=0.039

所以AP1=X(L/d)X(pu2/2)=0.039X(6/0.015)X(995.7X0.82/2)=4970.5Pa

AP2=3pu2/2=3X995.7X0.82/2=955.9Pa

则EAP=(4970.5+955.9)X1.5X仁29839.35Pav100Kpa

(2)壳程压强降

EAPd=(AP1+AB)FsNS

其中Fs=1.0Ns=1

/2

△Pi=Ffonc(N*1)(pu/2)

管子为三角形排列,F=0.5nc=1.1n1/2=1.1X12671/2=39

取折流挡板间距h=0.3mNB=L/h-1=6/0.3-1=19

壳程流通面积A0=H(D-ncd0)=0.3X(1-39X0.019)=0.0777m2

u0=V0/A0=580/3600/0.0777=2.07m/s

Reo=douop/卩=0.019X2.07X13/(0.918X10-5)=55696.1>

500

f0=5.0Re0-0.228=5.0X55696.1-0.228=0.414

所以△P,=0.5X0.414X39X(19+1)X13X2.072/2=4497Pa

/22

△P2=Nb(3.5-2h/D)pu/2=19X(3.5-2X0.3/1)13X2.07/2=1534.6Pa"

△F0=(4497+1534.6)X1X仁6031.6Pav10kPa

计算表明,管程和壳程压强降都能满足题设的要求。

4.3.4核算总传热系数

(1)管程对流传热系数ai

Rei=14922.4

-53

Pn=卩Cp/入=80.07X10-X4.174X10/0.6176=5.41

ai=0.023入/dRei0.8Pri0.4=0.023X(0.6176/0.02)X14922.40.85.41

=4061.6W/mE

(2)壳程对流传热系数a0

G‘=W/(L(Nt)2/3)=Vp/(L(Nt)2/3)=580X13/(6X12672/3)=10.7kg/sa0'

=0.945(入f3pf2g/卩fG‘)1/3

=0.945X(0.4323X5832X12.7X107(0.306X10.7))1/3=9635.2kcal/m2h-Ca0=1.163a0'

=1.163X9635.2=11205.7W/m2C

(3)污垢热阻

查阅资料,管内、外侧污垢热阻分别取为

22

Rs=0.00017mC/WRs0=0.00017mC/W

(4)总传热系数K0管外侧热阻忽略时,总传热系数K0为

K0=1/(1/a0+Rso+Rsid0/di+d0/di/ai)

=1心/11205.7+0.00017+0.00017<

0.019/0.015+0.019/(0.015X4061.6))

=1272.3W/m2;

由前面的计算可知,选用该型号的换热器时要求过程的总传热系数为1100w/m:

c

在规定的流动条件下,计算出的K0为1272.3W/m2C,故所选择的换热器是合适的,安全系数为(KrK)/KX100%=(1272.3-1100)/1100X100%=15.7%

第五章换热器主体设备工艺尺寸的确定

5.1管子的规格和排列方法

选择管径时,应尽可能使流速高些,但一般不超过前面介绍的流速范围。

易结垢、粘

度较大的液体宜采用较大的管径。

我国目前试用的列管换热器系列标准中仅为①25mm<

2.5mm及①19mM2mm两种规格的管子⑺。

管长的选择是以清洗方便即合理使用管材为原则。

长管不便于清洗,且容易弯曲。

一般出厂的标准管长为6m,则合理的换热管长应为1.5m、2m3m和6m。

系列标准中也采用这四种管长。

此外管长和壳径应相适应,一般去L/D为4〜6(对直径小的换热器可取大些)<

如前所述,管子在管板上的排列方法有正三角形、正方形和转角正方形等。

正三角形排列的优点有:

相同壳程内可排列更多的管子;

管板的强度高;

流体走短路的机会少,且管外流体扰动较大,因而对流传热系数高。

正方形排列的优点是便于清洗列管外壁,使用与壳程流体易产生污垢的场所;

但其对流传热系数较正三角形排列时低。

转角正方形排列则介于上述两者之间,与直列排列相比,对流传热系数可适当的提高。

管子在管板上排列的间距t(指相邻两管子的中心距),随管子和管板的连接方法的不同而异。

通常,胀管法取t=(1.3〜1.5)d0,且相邻两管外壁间距不应小于6mm即t>

(d°

+6)<

焊接法取t=1.25d0。

5.2管程和壳程数的确定

当流体的流量较小或传热

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 自然科学 > 物理

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2