击穿电压的温度特性PPT资料.pptx

上传人:聆听****声音 文档编号:798828 上传时间:2023-04-29 格式:PPTX 页数:41 大小:1.17MB
下载 相关 举报
击穿电压的温度特性PPT资料.pptx_第1页
第1页 / 共41页
击穿电压的温度特性PPT资料.pptx_第2页
第2页 / 共41页
击穿电压的温度特性PPT资料.pptx_第3页
第3页 / 共41页
击穿电压的温度特性PPT资料.pptx_第4页
第4页 / 共41页
击穿电压的温度特性PPT资料.pptx_第5页
第5页 / 共41页
击穿电压的温度特性PPT资料.pptx_第6页
第6页 / 共41页
击穿电压的温度特性PPT资料.pptx_第7页
第7页 / 共41页
击穿电压的温度特性PPT资料.pptx_第8页
第8页 / 共41页
击穿电压的温度特性PPT资料.pptx_第9页
第9页 / 共41页
击穿电压的温度特性PPT资料.pptx_第10页
第10页 / 共41页
击穿电压的温度特性PPT资料.pptx_第11页
第11页 / 共41页
击穿电压的温度特性PPT资料.pptx_第12页
第12页 / 共41页
击穿电压的温度特性PPT资料.pptx_第13页
第13页 / 共41页
击穿电压的温度特性PPT资料.pptx_第14页
第14页 / 共41页
击穿电压的温度特性PPT资料.pptx_第15页
第15页 / 共41页
击穿电压的温度特性PPT资料.pptx_第16页
第16页 / 共41页
击穿电压的温度特性PPT资料.pptx_第17页
第17页 / 共41页
击穿电压的温度特性PPT资料.pptx_第18页
第18页 / 共41页
击穿电压的温度特性PPT资料.pptx_第19页
第19页 / 共41页
击穿电压的温度特性PPT资料.pptx_第20页
第20页 / 共41页
亲,该文档总共41页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

击穿电压的温度特性PPT资料.pptx

《击穿电压的温度特性PPT资料.pptx》由会员分享,可在线阅读,更多相关《击穿电压的温度特性PPT资料.pptx(41页珍藏版)》请在冰点文库上搜索。

击穿电压的温度特性PPT资料.pptx

,二、本征激发和复合,当导体处于热力学温度0K时,导体中没有自由电子。

当温度升高或受到光的照射时,价电子能量增高,有的价电子可以挣脱原子核的束缚,而参与导电,成为自由电子。

这一现象称为本征激发(也称热激发)。

自由电子产生的同时,在其原来的共价键中就出现了一个空位,原子的电中性被破坏,呈现出正电性,其正电量与电子的负电量相等,人们常称呈现正电性的这个空位为空穴因热激发而出现的自由电子和空穴是同时成对出现的称为电子空穴对。

游离的部分自由电子也可能回到空穴中去,称为复合,,本征半导体的导电机理自由电子的定向运动形成了电子电流,空穴的定向运动也可形成空穴电流,它们的方向相反。

本征半导体中电流由两部分组成:

自由电子移动产生的电流。

空穴移动产生的电流。

本征半导体的导电能力取决于载流子的浓度。

温度越高,载流子的浓度越高。

因此本征半导体的导电能力越强,温度是影响半导体性能的一个重要的外部因素,这是半导体的一大特点。

三、热平衡载流子浓度温度一定时,半导体中的本征激发和复合会在某一平衡载流子浓度值上达到动态平衡。

此时热平衡载流子浓度为:

1.1.2杂质半导体,在本征半导体中掺入某些微量的杂质,就会使半导体的导电性能发生显著变化。

成为杂质半导体N型半导体:

掺入五价元素的杂质,可使晶体自由电子浓度大大增加,也称为(电子型半导体)。

P型半导体:

掺入三价元素的杂质,可使晶体空穴浓度大大增加,也称为(空穴型半导体)。

一、N型半导体在硅或锗晶体中掺入少量的五价元素磷(或锑),晶体点阵中的某些半导体原子被杂质取代,磷原子的最外层有五个价电子,其中四个与相邻的,半导体原子形成共价键,必定多出一个电子,这个电子几乎不受束缚,很容易被激发而成为自由电子,这样磷原子就成了不能移动的带正电的离子。

每个磷原子给出一个电子,称为施主原子。

N型半导体中的自由电子浓度大大增加,而空穴浓度由于和自由电子复合机会变大,浓度反而变小。

掺杂浓度远大于本征半导体中载流子浓度,所以,自由电子浓度远大于空穴浓度。

自由电子称为多数载流子(多子),空穴称为少数载流子(少子)。

二、P型半导体,在硅或锗晶体中掺入少量的三价元素,如硼(或铟),晶体点阵中的某些半导体原子被杂质取代,硼原子的最外层有三个价电子,与相邻的半导体原子形成共价键时,产生一个空穴。

这个空穴可能吸引束缚电子来填补,使得硼原子成为不能移动的带负电的离子。

由于硼原子接受电子,所以称为受主原子。

P型半导体中的空穴浓度大大增加,而自由电子浓度由于和空穴复合机会变大,浓度反而变小。

P型半导体中空穴是多子,电子是少子。

三、多子和少子热平衡浓度,不论P型或N型半导体,掺杂越多,多子数目就越多,少子数目就越少。

当温度一定时,两种载流子的热平衡浓度值的乘积恒等于本征载流子浓度值ni的平方半导体同时又处于电中性状态。

N型半导体:

n0,p0分别为自由电子和空穴的浓度;

Nd为施主杂质浓度,N型半导体:

与温度T无关,与温度T有关T升高,ni升高,p0升高,当p0n0时,杂质半导体变为类似的本征半导体.P型半导体具有相似的性质.少子浓度的温度敏感性是导致半导体器件温度特性差的主要原因.,1.1.3两种导电机理漂移和扩散,一、漂移和漂移电流在外电场作用下,载流子将产生定向运动,其中自由电子逆电场运动,空穴顺电场运动。

载流子的这种定向运动称为漂移运动,由它产生的电流称为漂移电流。

迁移率:

单位场强下的平均漂移速度,与温度、掺杂浓度等有关。

二、扩散和扩散电流,如图所示,半导体中任一假想面两侧存在浓度差,则从浓度大的一面流向浓度小的一面的载流子将多于从浓度小的一面流向浓度大的一面的载流子,从而造成载流子沿x方向的净流动。

这种由浓度差而引起的载流子的运动称为扩散运动,并形成相应的扩散电流。

扩散电流是半导体区别于导体的特有电流。

1.2PN结,PN结的产生:

在一块本征半导体在两侧通过扩散不同的杂质,分别形成N型半导体和P型半导体。

1.2.1动态平衡下的PN结一、阻挡层的形成,多子扩散和复合导致紧靠交界面两侧的区域内留下了杂质离子,其中P侧为带负电荷的受主离子;

N侧为带正电荷的施主离子,而且两侧的正负离子电,荷量相等,形成空间电荷区,也称耗尽区、阻挡层、势垒区。

当扩散达到一定程度时,空间电荷区增宽,当其产生的电场增大到一定数值时,多子扩散和少子漂移达到动态平衡。

二、内建电位差达到动态平衡时,由内建电场E产生的电位差称为内建电位差VB由动态平衡条件,可求得:

Na,Nd分别为PN结两边的搀杂浓度ni为本征载流子浓度。

VT=kT/q称为热电压,室温时,VTmV。

每升高C,VB约减小mV。

三、阻挡层宽度,阻挡层向低掺杂一侧扩展:

动态平衡下阻挡层宽度为:

1.2.2PN结的伏安特性PN结加上正向电压、正向偏置:

P区加正电压,N区加负电压。

PN结加上反向电压、反向偏置:

P区加负电压,N区加正电压。

PN结具有单向导电性,若外加电压使电流从P区流到N区,PN结呈低阻性,所以电流大;

反之是高阻性,电流小。

一、PN结正向特性,E减小,PN结加正向偏置V:

内建电场VB减小到VB-V阻挡层宽度减小漂移电流,IT减小,则IDIT,形成较大的多子扩散电流电流的连续性:

外电场从P区拉出电子,同时向N区补充电子,二者相等,维持电流的连续.,二、PN结反向特性,外加电压使得阻挡层宽度增加,打破动态平衡少子漂移加强,形成一定的漂移电流.少子漂移电流几乎与反偏电压的大小无关,称为反向饱和电流,记为IS.掺杂浓度越大,少子越少,IS越小,温度越高,少子浓度越高,IS越大,同时IS的值与PN结面积成正比.,E变大,PN结加反向偏置V:

内建电场VB增加到VB+V阻挡层宽度增加漂移电流,IT增加,则ITID,形成较大的少子漂移电流电流的连续性:

外电场从N区拉出电子,同时向P补充电子,二者相等,维持电流的连续.,三、伏安特性,PN结特性的指数表达:

当VVT时,当V为负值,且|V|VT时,则定义导通电压Von:

硅PN结:

Von=0.60.8锗PN结:

Von=0.20.3当VVon时,PN结导通,呈低阻特性;

当VVon时,PN结截止,呈高阻特性。

即为反向饱和电流,1.2.3PN结的击穿特性,一、雪崩击穿由于反向电压增大,阻挡层内部电场增强,阻挡层中载流子动能增大;

当增大到一定程度,载流子获得的动能足于把共价键中的价电子碰撞出来;

在强电场作用下,新的载流子又碰撞出更多的载流子;

如此产生连锁反应,使得PN结反向电流急剧增大,且增大速度极快,所以叫做雪崩击穿。

雪崩击穿一般出现在搀杂浓度较低的PN结中,击穿电压较高。

二、齐纳击穿在搀杂浓度很高的PN结中,阻挡层很薄,此时两边加上不大的反向电压,就能产生很强的电场,足以把价电子直接从共价键中拉出来;

此过程称为场致激发;

它可以产生大量的载流子,呈现反向击穿特性,称为齐纳击穿。

齐纳击穿一般出现在高搀杂的PN结中,击穿电压较低。

三、稳压二极管,稳压二极管特性:

PN结被击穿后,尽管其反向电流急剧增大,但是PN结两端的电压几乎不变;

所以可制成稳压二极管,或齐纳二极管。

稳压二极管符号:

稳压二极管伏安特性曲线:

最小稳定电流:

保证可靠击穿所允许的最小反向电流。

最大稳定电流:

保证稳压管安全工作所允许的最大反向电流;

当电流大于这个电流时,加到结中的功率足以使结过热而烧毁。

1.2.4PN结的温度特性,一、PN结伏安特性的温度特性温度升高,IS增大,温度每升高10,IS约增加一倍;

PN结正偏时,虽然随温度升高而减小,但不如IS随温度升高而增大得快,因而PN结的正向电流随温度升高而略有增大,与温度每升高1,Von约减少2.5mV等价。

二、击穿电压的温度特性,雪崩击穿:

温度升高,载流子热骚动加强,发生碰撞而电离的机率减少,此时应加大反向电压,才能发生雪崩击穿,击穿电压具有正的温度系数。

齐纳击穿:

温度升高,价电子能量状态增大,价电子更容易挣脱共价键束缚,则更容易发生齐纳击穿,击穿电压具有负的温度系数。

1.2.5PN结的电容特性,PN结有电荷量随电压变化的非线性电容特性一、势垒电容定义:

其值为伏库特性在电压V上的斜率表达式为:

VB为内建电位差,n为常数,称为变容指数,其值与PN结的工艺结构有关。

二、扩散电容,外加电压变化同时改变阻挡层外中性区内贮存的非平衡载流子,当外加电压增加V时,P区和N区存储的电荷量相应增加Q相当于在PN结上并联了一个电容。

定义:

三、PN结电容PN结总增量结电容:

外加正向电压时:

CDCT,外加反向电压时:

CD0,四、变容二极管PN结外加反向电压时,主要是一个由势垒电容构成的较理想的电容器件;

可制成变容二极管。

1.2.6PN结的开关特性,一、理想开关特性PN结正偏,呈现出低阻特性;

PN结反偏,呈现出高阻特性。

忽略导通电压Von和反向饱和电流IS的影响,PN结具有理想开关的特性,可以制作成开关二极管使用。

二、开关特性的非理想性,1由于二极管导通电压VD(on)的存在,只有加在二极管两端的正偏电压大于VD(on)时,才能认为二极管作为开关导通;

2由于二极管导通后呈电阻特性,只有在负载电阻R远大于二极管导通电阻时,才能忽略该导通电阻的影响;

3二极管反偏时,二极管中的电流并不等于0,约为IS,此时二极管并不能完全切断电路;

4由于PN结电容的存在,二极管开关的导通和截止都需要一定的时间。

三、开关二极管参数最大正向电流,最大反向工作电压,反向击穿电压,反向电流,零偏结电容,反向恢复时间,1.3晶体二极管的分析方法,1.3.1晶体二极管模型一、晶体二极管的数学模型或二、伏安特性曲线,三、等效电路模型,二极管大信号电路模型,1.大信号电路模型二极管的非线性主要表现在单向导电性上,伏安特性可以用用左图的两段折线近似表示,其中RD称为二极管的导通电阻。

在对电路进行直流或者大信号分析时,二极管可以用左下图的大信号电路模型等效。

理想二极管伏安特性和电路符号,2.小信号电路模型,rj:

增量结电阻或肖特基电阻,或,1.3.2晶体二极管电路分析方法一、图解分析法,采用图解法求解时,上述方程组的求解过程就是寻找上述两式所表示曲线的交点。

1.直流分析令VDD,相应的V和I都为,方程组简化为,下图中Q点即为方程组的解:

通常将管外电路方程所描绘的直线称为晶体二极管的负载线,2.交流分析在(VDDVDD的作用下,管外电路方程代表的负载线是一组斜率为R、且随VDD变化而平行移动的直线。

若设VDDVmsint,负载线将随着t的变化而平行移动,这些负载线和二极管伏安特性曲线的交点也呈现正弦变化,而交点对应的电压和电流就是t取不同值时得到的二极管上的响应,即为所求。

二、等效电路分析法,1.直流分析例:

如图所示,两个二极管的VD(on)为0.7V,RD=100试画出Vo随VI变化的传输特性。

解:

VI25V时,D1导通,D2仍然截止时:

VOVDD1时,D2导通,VO=100V,2.交流分析,例:

如图所示电路,已知IQ=0.93mA,R=10krs=5VDDsin*tV求V。

将a图用小信号模型表示,如图b所示。

1.4晶体二极管的应用,1.4.1整流与稳压电路,半波整流电路,电源设备组成框图一、整流电路,输入、输出波形,二、稳压电路,符号大信号模型小信号模型稳压管,基本稳压电路,限流电阻R要合理选择,其最小值和最大值分别由下列关系式决定:

1.4.2限幅与钳位电路,双向限幅电路采用稳压管的双向限幅电路:

限幅特性,一、限幅电路双向限幅电路:

具有上、下门限的限幅电路单向限幅电路:

仅有一个门限的限幅电路双向限幅电路及其限幅特性:

二、钳位电路,正峰钳位电路,:

负峰钳位电路:

1.4.3二极管与门、或门,二极管与门电路:

二极管或门电路:

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 法律文书 > 判决书

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2