微型扬声器振幅测试Word文件下载.docx

上传人:b****4 文档编号:8165998 上传时间:2023-05-10 格式:DOCX 页数:11 大小:707.57KB
下载 相关 举报
微型扬声器振幅测试Word文件下载.docx_第1页
第1页 / 共11页
微型扬声器振幅测试Word文件下载.docx_第2页
第2页 / 共11页
微型扬声器振幅测试Word文件下载.docx_第3页
第3页 / 共11页
微型扬声器振幅测试Word文件下载.docx_第4页
第4页 / 共11页
微型扬声器振幅测试Word文件下载.docx_第5页
第5页 / 共11页
微型扬声器振幅测试Word文件下载.docx_第6页
第6页 / 共11页
微型扬声器振幅测试Word文件下载.docx_第7页
第7页 / 共11页
微型扬声器振幅测试Word文件下载.docx_第8页
第8页 / 共11页
微型扬声器振幅测试Word文件下载.docx_第9页
第9页 / 共11页
微型扬声器振幅测试Word文件下载.docx_第10页
第10页 / 共11页
微型扬声器振幅测试Word文件下载.docx_第11页
第11页 / 共11页
亲,该文档总共11页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

微型扬声器振幅测试Word文件下载.docx

《微型扬声器振幅测试Word文件下载.docx》由会员分享,可在线阅读,更多相关《微型扬声器振幅测试Word文件下载.docx(11页珍藏版)》请在冰点文库上搜索。

微型扬声器振幅测试Word文件下载.docx

粉红噪声是自然界最常见的噪音,简单说来,粉红噪声的频率分量功率主要分布在中低频段。

粉红噪声从人耳中听到的是平直的频率响应——“非常悦耳的一种噪声”最常用于进行声学测试的声音。

从波形角度看,粉红噪声是分形的,在一定的范围内音频数据具有相同或类似的能量。

粉红噪声的电平从低频向高频不断衰减,其幅度与频率成反比(1/f)。

其幅度每倍频程(一个8度)下降3dB。

噪声能量在每倍频程内是相等的。

由于人耳对声音的感知是以倍频程为特征的,粉红噪声在每个倍频程的能量是相等的,从统计学的角度看,用粉红噪声作为激励信号比一般的扫频激励信号更接近音乐信号的特征,更适合于研究实际振幅的特征。

粉红噪声的产生方法有很多种,比如PaulKellet的加权和滤波器,PaulKellet的简易滤波器,DonMorgan的简单和滤波器,RobertBristow-Johnson的零极点滤波器和Voss算法等。

但这些都是基于时域产生的随机粉红噪声,对AP而言,产生任意信号的方法是通过对频率点的设置完成的,而且由于存储和计算的局限,频率点的个数是有限的。

以下利用两种方法从频率域产生粉红激励噪声。

2.1利用cooledit产生粉红噪声

利用cooledit可以产生粉红噪声,但如何从中提取有限个频率点来反映粉红噪声的整体特性以便下一步处理到AP中,要经由以下几步:

1.产生粉红噪声(Fig.1)

2.利用频谱分析仪做FFT分析(Fig.2)

3.将FFT得到的结果导入excel中以进一步处理数据

4.从中取连续的50个频率点将频率和幅值处理成.adx格式的文件后导入AP的multicreation中从而生成粉红噪声信号源。

2.2利用粉红噪声的理论定义产生粉红噪声

由于对粉红噪声而言,每个频率点的幅值与频率成反比(1/f),且每倍频程能量相等,这样在100Hz至10KHz频带内,50个频率点以北频程的关系取得,每1/9倍频程取中心频率及对应幅值1/f,

100,108,116,126,136,147,159,171,185,200……

经由以下几步:

1.由定义以1/9倍频程的关系产生粉红噪声(Fig.3)

2.在excel里生成.adx格式的文件后导入AP的multicreation中从而生成粉红噪声信号源。

Fig.1Cooledit粉红噪声时域图

Fig.2Cooledit粉红噪声频域图

Fig.3由定义产生的粉红噪声频域图

比较上述两种生成粉红噪声的方法,方法一是等频率间隔采样的,方法二是等倍频程间隔采样的,从频谱分析看,方法二比方法一的精度更高,而且更简便,故接下来主要采用法二。

3实验测试振幅响应

本试验共做了四种测试以便下一步推算,比较和验证。

每种测试均征对同一个扬声器的同一点,采用了11mm15cm矩形扬声器。

3.1扫频信号频响测试

这项测试主要是为理论推算提供信息,因对不同型号的扬声器的不同位置振幅扫频响应是不同的。

输入电压为1Vrms。

Fig.4扫频信号振幅频响图

3.2有效输入电压为1Vrms频段为100-10KHz的粉红噪声

此类粉红噪声的频带较宽,用AP生成的信号的峰值因子为2.78237。

粉红噪声信号源及振幅曲线如下:

Fig.5100-10KHz,1Vrms粉红噪声信号源

 

Fig.6Fig.5激励下的振幅频域图

Fig.7Fig.5激励下的振幅时域图

3.33.2中的信号通过400Hz矩形高通滤波器后激励扬声器

此类粉红噪声的频带变窄(400-10KHz),其他不变。

用AP生成的信号的峰值因子为3.34008。

Fig.8Fig.5的信号经过400Hz高通滤波器滤波

Fig.9Fig.8激励下的振幅频域图

Fig.10Fig.8激励下的振幅时域图

3.43.3中的信号放大使其有效值为1Vrms

该测试信号是为了进一步与3.2中的信号比较。

Fig.11Fig.8中的信号源放大成1Vrms

Fig.12Fig.11激励下的振幅频域图

Fig.13Fig.11激励下的振幅时域图

4测试振幅比较和分析

以上除扫频信号外的三种测试信号激励下的振幅时域图合并在一幅图上的比较如下:

Fig.14振幅时域图比较

a.100-10KHz粉红噪声激励的振幅

b.a经400Hz高通滤波后激励的振幅

c.b放大成与a功率相同后激励的振幅

时域的比较可以看出振幅峰值的情况,由于存在峰值因子,有效值的情况不能看出。

但从上图看到,由于人耳感知频域的局限性,a.b信号的听觉感受差不多,但振幅峰值关系大约小了一半,a.c信号的激励源功率虽然相同,但c比a响一倍,但两者时域振幅峰值相差不大。

原因是:

c信号滤掉了400Hz以下的低频之后对应的频带内频响灵敏度比较低的频带相对变宽,虽然激励源有效值同为1Vrms振幅有效值会比a激励的小,但是由于c的振幅峰值因子大,导致从图上看到的c振幅时域峰值与a时域峰值的差不多。

5理论验证

设激励信号源的时域为频域为s(t),S(f),扬声器频响灵敏度为H(f),扬声器冲激响应为h(t),振幅的时域为a(t),频域为A(f),值得说明的是这里所说的振幅单位是V,对应的长度电压关系为1V对应0.1mm。

根据信号与系统的理论,把扬声器看作一个系统,可得

a(t)=s(t)*h(t);

A(f)=S(f)´

H(f);

以下的理论推算基于上面第二个式子。

加注rms下标表示有效值

一下表格列出了对振幅有效值测量结果和理论推算结果的比较,a,b,c分别对应三次不同的信号激励下振幅的情况,这里的单位仍为电压,对应的长度电压关系为1V对应0.1mm。

a.Fig.5即100-10KHz,1Vrms粉红噪声信号源激励的振幅

b.Fig.8即a经400Hz高通滤波后激励的振幅

d.Fig.11即b放大成与a功率相同后(1Vrms)激励的振幅

Table1三种情况下振幅对比表

振幅有效值测量结果(V)

振幅有效值理论推算结果(V)

a

1.461998

1.494

b

0.613

0.4288

c

0.96056

0.875

在误差允许的范围内,理论推算值可以消可观的预测出振幅的有效值,但由于峰值因子的存在,且其只能由实际测量得到,所以a振幅大概是c振幅的1.5倍,但峰值却差不多。

上述测试表明,如果扬声器振膜在低频的振幅灵敏度较大,在信号激励前滤去低频,能有效地减小振幅。

但是,由于峰值因子的不确定性,相同功率不同频带的粉红噪声激励下,只能由频响曲线推测出振幅有效值,而不能推测出振幅峰值。

导致的结果是对相同功率不同频带的粉红噪声,虽然各自频带对应的振幅频响灵敏度相差很大,但振幅时域的峰值差不多。

6总结

本文以统计学角度研究音乐信号和人耳听觉倍频程感知的基础上,提出以粉红噪声普遍性地代替音乐信号的好处。

介绍了如何在AP里导入不同频带的粉红噪声源。

利用粉红噪声作为激励源,研究不同频带和不同功率下振膜振幅的变化,以期望得到如何在相似的听觉效果下激励源功率和振膜振幅的减小。

最后从理论上对实验结果进行了验证,分析和建议。

对今后工作的建议:

研究如何在AP生成更准确频域分辨率更大的粉红噪声源;

用音乐噪声代替粉红噪声激励扬声器,低频滤除后研究振幅变化。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 工程科技

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2