地震勘探基础知识Word文档格式.docx

上传人:b****3 文档编号:8180712 上传时间:2023-05-10 格式:DOCX 页数:12 大小:90.14KB
下载 相关 举报
地震勘探基础知识Word文档格式.docx_第1页
第1页 / 共12页
地震勘探基础知识Word文档格式.docx_第2页
第2页 / 共12页
地震勘探基础知识Word文档格式.docx_第3页
第3页 / 共12页
地震勘探基础知识Word文档格式.docx_第4页
第4页 / 共12页
地震勘探基础知识Word文档格式.docx_第5页
第5页 / 共12页
地震勘探基础知识Word文档格式.docx_第6页
第6页 / 共12页
地震勘探基础知识Word文档格式.docx_第7页
第7页 / 共12页
地震勘探基础知识Word文档格式.docx_第8页
第8页 / 共12页
地震勘探基础知识Word文档格式.docx_第9页
第9页 / 共12页
地震勘探基础知识Word文档格式.docx_第10页
第10页 / 共12页
地震勘探基础知识Word文档格式.docx_第11页
第11页 / 共12页
地震勘探基础知识Word文档格式.docx_第12页
第12页 / 共12页
亲,该文档总共12页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

地震勘探基础知识Word文档格式.docx

《地震勘探基础知识Word文档格式.docx》由会员分享,可在线阅读,更多相关《地震勘探基础知识Word文档格式.docx(12页珍藏版)》请在冰点文库上搜索。

地震勘探基础知识Word文档格式.docx

v波传播速度

r波旅行时间

如声波速度为V=340/77/5.波由发声到回声的旅行时间为/二10s,那么障碍物到声源的距离为:

5=1(340*10)=1700/?

/

2

地震勘探的根本原理与此极为类似,如图1、图2所示。

从图可见,两者只是地下反射界面产状不同,其它根本原理相同,皆为在一条测线上某点0放炮(利用人工在地面激发的机械振动产生地震波),于是就产生地震波向下传播,当地震波遇到岩石性质不同的分界面时就会产生反射。

在放炮的同时,我们可以在地面上用地震仪将来自同一界面上的反射波信息记录下来。

根据地震波从爆炸时刻起到反射波抵达地面的时刻止的传播时间/,经换算为反射点处的垂直反射时间b再用VSP测井(或其它方法)获得的地震波在岩层中的传播速度匕根据

(1)式,就可算出各点的地层埋藏深度H。

我们可沿地面上任一条测线逐段进行预测,并对观测数据用计算机进行处理就能得到形象地反映地下岩层分界面起伏变化的资料条测线的地震剖

面图。

它近似地反映了地下反射界面的构造形态。

在工区内布置一系列测线形成一个测网,并采用相同的方法进行观测和数据处理,就可得到地下地层起伏的完整形态;

再综合其它物探方法与地质钻井等各方面的资料,进行去伪存真、去粗取精、由表及里的分析和研究,就能查明地下可能的储油构造,为钻探确定和提供井位。

概括地说,所谓地震勘探,就是通过人工激发〔炸药震源或其它震源〕在地面产生地震波,并研究地震波在地下地层中的传播规律,借以查明地下储油地质构造,为寻找油气田或其它目的效劳的一种地球物理勘探方法。

1.3地震勘探的内容

地震勘探的全部生产工作,根本可分为以下三个组成局部。

131野外资料采集

其任务是在地质或其它物探方法工作初步确定的含油气有利地区进行进一步的勘探。

它分为施工设计和野外施工两个阶段,其主要的内容是激发地震波、接收地震波。

围绕着这两大内容可细分为:

地震测线、激发点、接收点的测定,激发和接收等一系列工作。

资料数据处理

其任务是把野外采集的地震记录信息,根据地震波的传播理论,利用计算机进行数据的加工处理工作,提取出各种有效信息。

资料地质解释

根据资料处理提供的各种处理成果和信息进行地震勘探的构造解释〔即地质解释〕.是地震勘探的目的和最后成果,并对工区的含油气远景作出评价,最后提供钻探井位。

1.4观测系统

地震勘探中的“观测系统〞是指地震波的激发点与接收点的相互位置关系。

为了查明地下构造形态,必须连续地追踪各界面的地震波。

因此,就要在地面上沿测线方向在许多个激发点上分别激发地震波,并进行连续的屡次观测,从而可连续地追踪地下各界面的地震波。

每次观测时,激发点和接收点的相对位置应保持一定的关系,以保证能够连续追踪地震界面。

对于不同的勘探方法,有不同的观测系统。

如反射波法,采用反射波观测系统。

地震测线

地震测线就是沿着地面进行地震勘探野外数据采集工作的路线。

对测线观测得到的处理结果就是地震剖面〔时间剖面或深度剖面〕,它是地震资料地质解释的根本依据。

有两种形式的地震测线:

・纵测线:

激发点和观测点同在一条直线上的测线。

・非纵测线:

激发点和观测点不在一条直线上的测线。

屡次覆盖的观测系统

屡次覆盖是相对于一次覆盖而言的,是指对被

追踪的界面观测的次数而说的。

利用共反射点原.▽

b

理,在野外用屡次覆盖方法施工的屡次覆盖观测系C7

统,就是保证对同一反射点进行屡次观测,并对同°

e7—〜

一反射点的多道记录进行共反射点叠加,从而突出

更2夂沖悪玄

有效波,而对一些干扰波(主要是屡次波)进行有

效的压制。

目前,共反射点屡次覆盖的观测系统激发点与排列的关系有以下几种形

式:

炮点在排列的中点叫中点激发,如图3(a)所示。

炮点在排列一边端点的,叫单边激发。

其中图3(b)为激发点在排列端点处,图3(c)为激发点在排列一边但与第一观测点有一定距离(称偏移距);

激发点在排列两端,即在每一排列上观测两次。

双边激发,也有两种情况,一种如图3(d),没有偏移距,而另一种如图3(e)有偏移距。

下边以单边激发六次覆盖为例,来说明屡次覆盖观测系统图。

一般覆盖次数用n表示,仪器记录道数N=24,即每激发一次仪器可记录24道检波点图记录。

图4所示即为排列道数24道,单边激发,每激发一次,激发点随排列一起

向前移动两个道间距,这样便组成一个六次覆盖的观测系统。

在图4中,将所

有激发点位置01、02、03按比例尺标在同一条水平直线上,然后从各炮点

向排列方向作许多条与激发点线呈45。

角的直线,将同一排列上的24道检波点

位置分别投影在这些45。

的斜线上,即每一条斜线表示一个排列可获得一张共炮点原始记录。

由图可以看出:

0’炮第21道,0,炮第17道,03炮第13道,

0|炮第9道,Os炮第5道,06炮第1道,

都是接收来自地下同一点A的反射,因此分别从这六张记录中抽出的21、

17、13、9、5、1道就是共反射点A的共反射点道的集合,称为共反射点道抽

道集。

其它的反射点也可以找到相应的共反射点道集。

而0厂。

6次激发记录,可

由图中看出只能获得六次覆盖的四个相邻共反射点A、B、C、D的四个道集,它

们为:

lx5.

2、6、

3、7、

4、8、

假设连续激发O7OsO9O:

0Ou

等炮点,那么可以获得一张连续

的六次覆盖剖面。

它们的共反

射点的相应叠加道抽道集如表

所示。

由表还可以知道这种观

测系统只有4种抽道集即上述

B、C、D四种,组成24道六次

覆盖一张记录共重复六次。

9、

13

17

21

A点

10

14

18

22

B

11

15

19

23

C

12

16

20

24

D

以后,每增加一炮就重复一次。

另外从图5-3还可以看出,炮点的水平连线与共反射点道集的连线是互相垂直的,其交点就是共反射点在地面的投影。

这就是单边激发24道仪器六次覆盖的观测系统。

表1组成每个共反射点道集各道的炮号和道号表

爼词解释

炮点(SHOTPOINT):

用来产生弹性波能量的震源点中心,也称作震源。

缩写

为:

SP

检波点(RECEIVERPOSITION):

地震波接收点中心

道数(TRACENUMBER):

地震记录道数目

深度点(DEPTHPOINT):

来自炮点并旅行到检波点的地震射线在地层上的入射

点,缩写为DP

共深度点(COMMONDEPTHPOINT):

如果地层界面为水平界面,在测线上不同

位置0进行激发,在一系列对应检波点S上接收到来自地下反射界面上同一点R的反射波。

R就叫共反射点,或叫共深度点。

缩写为CDP

(共深度点)或CMP(共中心点)

覆盖次数(STACKINGFOLD):

组成一个CDP的道数

叠加(STACK):

对属于同一个道集的地震记录道进行相加

剖面(SECTION):

沿着地震测线的垂直切面,以时间或深度为单位的地下地层

的影象,由相邻的道组成

1.5与地震勘探有关的各种地震波

在地震勘探中用震源激发时,一声炮响之后会产生各种各样的地震波,按

在传播过程中质点振动的方向来区分,可分为纵波和横波;

按是在介质中传播

1.5」纵波和横波

理论和实践证明,介质中各点的振动方向和波的传播方向可以是不相同的。

介质中各点的振动方向和波的传播方向相同的波就是纵波,介质中各点的振动方向和波的传播方向相垂直的波是横波。

更形象地说,在传播着纵波的弹性介质中,在同一时刻各点的密度是不相同的,有的局部受到压缩〔密度増大〕,有的局部发生膨胀〔密度减小〕;

随后,压缩的局部回变为膨胀,而膨胀的局部却变为压缩。

介质中各个局部这样一胀一缩地交替变化着,也就是介质中各点振动方向与波的传播方向相同。

因此,纵波又叫做疏密波或压缩波。

另外,由于纵波似乎是受推动〔Push〕产生的,常简称为P波。

在地震勘探中,目前主要利用的是纵波。

在传播横波的弹性介质中,同一时刻各点的密度不变,但各点介质似乎是垂直于波的传播方向剪切似地在摇动〔Shake〕,故常称为S波,因此也叫切变波或剪切波。

目前在地震勘探中主要用到的是纵波。

体波和而波

地震纵波和横波可在地层中介质的整个立体空间中传播,所以把它们合称为体波。

通常我们看到的水波,那不是在水的内部,而是在水和空气的分界面上传播的一种波,这种在介质的分界面上传播的波叫做面波。

在地震勘探中.爆炸不但会在地层中引起体波,而且会在地外表〔岩石和空气接触的分界面,也称为自由外表〕以及在地下许多不同岩层的分界面上产生复杂的面波。

特别是沿地面传播的波,有好几种类型,通常统称为“地滚波〞。

这种波在地表最强,但随深度的加大而迅速衰减。

1.6波阻抗和反射系数

161波阻抗

当波到达两种介质的分界面时,通常会分成两局部,一局部能量回到第一种介质中,就是所谓的反射波;

另一局部能量透入第二种介质中,就是所谓的透射波。

在这个分界面上面为第一种介质,下面为第二种介质。

和Q分别是上、下介质的密度,K和仏分别是波在上、下介质中的传播速度。

那么把密度和速度的乘积叫做波阻抗。

就是说,上下两种介质的波阻抗分别是

Z严和Z2=dV2。

反射系数

当地震波入射到两种波阻抗不相等〔0M工02勺〕介质的分界面上,就会产生波的反射。

乙和Z?

的差异越大,反射波越强。

反射波的振幅A反与入射波的振幅A入有如下关系:

(2)

_02叫-训

刖2+QM

其中R定义为该界面的反射系数,说明反射振幅除与入射振幅有关外,主要与上下界面的波阻抗差成比例。

1.7地震波的速度

地震波的速度是地震勘探中最主要的一个参数,是地震波的运动学特点之

在用地震勘探方法研究地下地质构造起伏形态时,其根本公式是(3):

佩=%(%)0)

从这一根本公式可以看到速度参数卩的重要性。

在资料处理中,要作NMO校正,需要叠加速度;

在作时深转换时,需要平均速度。

因此,我们要了解和掌握各种有关速度的概念及其求取方法。

平均速度

其定义是:

在垂直层面的方向上,波旅行的总时间除这组地层的总厚度,也可定义为:

一组水平层状介质中某层以上介质的平均速度乞就是地震波垂直穿过该层以上各层的总厚度与总的传播时间之比。

对“层水平层状介质的平均速度v为:

-h\+/b+•・・+/_V=—!

=

%心—+—+•

儿“2

式中hi

每一层的厚度

X每一层的垂直时间岭每一层的层速度

均方根速度与叠加速度

在平均速度的讨论中,是当地震波的射线垂直层面时得到的速度概念。

而实际的层状介质或连续介质的射线不是垂直层面的直射而是折射线或曲射线,利用这种介质和射线的状态求得的速度便是均方根速度。

将水平层介质的反射波时距曲线近似地当作覆盖介质为均匀的反射波时距曲线所求得的波速即为均方根速度:

'

厂―⑹

均方根是说把各层速度值的平“方〞按时间取其加权平“均"

值而后取平方“根〞值(注意其中速度较高的层所占比重要大),可见,均方根是把层状介质反射波时局距曲线近似地当作均匀介质的双曲线型时距曲线求出的速度。

我们知道,动校正公式为:

△心=搭+"

7。

(7)

式中:

/0=2%为自激自收时间

V为界面以上的地层速度

当IX时,利用上式求乃的先决条件是须求出速度V,在数据处理中—般通过速度分析得到,这种速度叫做叠加速度。

利用这个速度可以计算出精确的动校正值使反射波同相轴对齐,并能得到较好的水平“叠加"

剖面。

当地层存在倾角时,利用速度谱求得的速度Vrf(Vrf=V/cos«

),这个速度叫等效速度(与水平界面所用速度等效),但一般还是把它叫叠加速度,因为它

同样可以计算出精确的动校正值,而得到有效的水平叠加剖面。

叠加速度耳一般都大于地层速度且V=Vd/Cosa,只有当界面水平〔"

二0〕时,V=VJO

可见,用速度谱求出的大量速度数据,都是叠加速度,是计算动校正的主要参数:

上述叠加速度在地层水平时就等于均方根速度。

在地层倾斜时经过倾角校正〔乘以倾角的余弦〕后就是均方根速度;

用它们可以求出与地层岩性性质有密切关系的层速度。

视速度

前面所讨论的速度,我们都是沿着波的传播方向来考虑问题的。

如果不同沿着波的传播方向而是沿着别的方向来确定波的速度,得到的速度就不是波速的真实值。

这样的结果叫做波的视速度。

我们知道,速度是一个向量。

当谈到波速时,我们是沿着波动方向或射线

阪1A加凑

方向考虑的,如果沿着别的方向来确定波速,其结果将不是真实值,这时的速度叫做波的视速度,用V*表示。

当在地震勘探中所谓的视速度.一般就是指波沿预测线方向传播的速度。

如图6。

假设在地面上沿直线AB观测地震波,S】、S:

为直线上相隔距离不大的两个观测

点,由深部到达地面的波的波前可近似看作平面波。

设平面波前ti时刻到达S’点,匕时刻到达S:

点,波前与观测线的夹角为

如果不考虑波从哪里来,在观测线上看,好象波沿AB线传播,即经过时间间隔A/=/2-/,,走过S$=AX的距离,即波沿此观测线传播的速度为:

宀学⑻

旷称为视速度。

实际上,波并不是沿测线AB传播,而是沿垂直于波前的方向以真速度V传播,在山时间内传播了M的距离,因此可见真速度v与视速度書是不同的。

那么两者有什么关系呢?

从直角三角形DSIS?

可见

AS=AXsin(fl)

将此式带入(8)式,得:

V*=V/sin(a)(9)

此式代表了V与矿的关系,这关系叫视速度定律,"

称为入射角。

由视速度定律可看出:

波沿测线传播的视速度经常较真速度大。

当"

二90°

时,即波前垂直于观测线,这时波沿测线传播的视速度等于真速度,即V4=vo如直达波的视速度就等于真速度。

如"

二0,波前平行于观测线,这时视速度为无穷大。

可见视速度一方面取决于真速度,但更重要的是取决于波对于地面入射角的变化情况。

研究矿的变化,对区分不同类型的波具有极大的实际意义。

视速度与真速度不同,它可以是正值,也可以是负值,如果沿测线正读数方向传播,视速度为正值,反之为负值。

层速度

沉积岩的特点是成层分布。

与地层的成层性相对应,速度从浅到深也可分为几个速度层,各层之间在波速上存在明显的差异。

这种速度分层与地层的地

质年代、岩性上的分层一般是一致的,但也可能不完全一致。

并且速度分层没有地质分层那么细,有时地质年代不同,但岩性相同的一些地层也可以成为一个速度层。

在地震勘探中•把某一速度层的波速叫做这一层的层速度。

层速度可用下述方法求得:

・用声波测井求取层速度;

・用VSP测井求取层速度;

・由均方根速度利用迪克斯(Dix)公式求取层速度。

迪克斯公式为:

影响地震波速度的因素

地震勘探是以研究地震波在岩层中的传播为根底的。

岩石的弹性性质不同(主要表现为地震波的速度不同),地震波在其中传播的情况就不同,地震勘探正是利用了这种关系来研究地下地层的地质构造问题的。

理论研究与大量实际资料证明,地震波在岩层中的传播速度与岩层的弹性性质有关。

如与岩石的弹性常数、密度、埋藏深度、地质年代、孔隙度和孔隙中流体等因素有关。

一般说来,岩石越致密、地质年代越老、埋藏越深,其速度就越大。

在解释速度谱时,我们可据此对速度的正确性进行判断。

1.8地震反射法、地震折射法

地震波在传播过程中’当遇到弹性分界面时,将产生反射和折射;

接收其中不同的波,就构成不同的地震勘探方法。

大致有:

1.8」地震反射法

是在离震源较近的假设干个观测点上,测定地震波从震源出发入射到不同的弹性分界面上经反射后回到地面的旅行时间T。

如果我们用其它方法测定出地震波在岩层中的传播速度V,就可以按公式//=i/2(v*n得出地层分界面的埋藏深度H。

沿着地面上一条测线,一段一段地进行观测,并对观测结果进行处理之后,就可得到形象地反映地下岩层分界面起伏变化的深度构造的成像一-地震时间剖面图。

地震折射波

是研究在速度分界面上(波在这个界面之下地层中的传播速度也大于波在其上面地层中的传播速度VJ上滑行波所引起的振动。

这种振动返回地面被接收下来,在地震勘探中叫折射波。

折射波到达不同观测点的时间包含着速度界面的深度和速度的信息。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 党团工作 > 入党转正申请

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2