制冷剂的类型与参数文档格式.docx

上传人:b****3 文档编号:8214330 上传时间:2023-05-10 格式:DOCX 页数:11 大小:43.31KB
下载 相关 举报
制冷剂的类型与参数文档格式.docx_第1页
第1页 / 共11页
制冷剂的类型与参数文档格式.docx_第2页
第2页 / 共11页
制冷剂的类型与参数文档格式.docx_第3页
第3页 / 共11页
制冷剂的类型与参数文档格式.docx_第4页
第4页 / 共11页
制冷剂的类型与参数文档格式.docx_第5页
第5页 / 共11页
制冷剂的类型与参数文档格式.docx_第6页
第6页 / 共11页
制冷剂的类型与参数文档格式.docx_第7页
第7页 / 共11页
制冷剂的类型与参数文档格式.docx_第8页
第8页 / 共11页
制冷剂的类型与参数文档格式.docx_第9页
第9页 / 共11页
制冷剂的类型与参数文档格式.docx_第10页
第10页 / 共11页
制冷剂的类型与参数文档格式.docx_第11页
第11页 / 共11页
亲,该文档总共11页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

制冷剂的类型与参数文档格式.docx

《制冷剂的类型与参数文档格式.docx》由会员分享,可在线阅读,更多相关《制冷剂的类型与参数文档格式.docx(11页珍藏版)》请在冰点文库上搜索。

制冷剂的类型与参数文档格式.docx

R23/R13

40.1/59.9

-88.7

制冷量比R13大

R32/R115

48.2/51.8

-57.2

单级压缩可达50C以下

R12/R31

78/22

-29.6

空调工况制冷能力比R12大8%

R31/R114

55/45

-12.5

R124/RC318

60/40

-12.3

有较低的冷凝压力

R290/R22

31.8/68.2

-48.6

种类的混合制冷剂具有不同的热物理性质,这就会为制冷剂的优选提供了较大的余地。

对于某一固定的制冷系统,在其最佳运行工况下,要求制冷剂必须具有特定的热物理性质。

合理选用不同的共沸混合制冷剂使其满足这种特定的热物理性质,就可以提高制冷系统的热力学效率,从而达到节能的效果。

由于共沸混合制冷剂可使冷凝压力降低,而同时蒸发压力升高,这样在冷凝温度和蒸发温度不变的情况下,压缩机的压比就会减小,从而使压缩机的功耗降低。

因此获得同样的制冷量时就只需较少的功。

同时蒸发压力的升高会减小蒸发器的真空度,使蒸发器更稳定地工作,而冷凝压力的降低会使冷凝器在更安全的状态下远行。

印度的制冷专家C.P.AROR/在第十五届国际制冷学会上发表的论文中,以共沸混合制冷剂R22/R12(85/15)为例肯定了这个效果。

由于压比的降低,压缩机的容积效率得到改进,制冷量增加,性能系数提高,同时压缩机的电机温度也从87.5C降低到70.3C,电机启动线圈的温度从97.3C降到58.3C,对空调器的安全运转起了重要的作用。

采用共沸混合制冷剂能够使压缩机的排气温度降低,它与制冷剂的性质密切相关。

研究证明制冷剂的热容越大或绝热指数越小,则压缩机的排气温度就越低。

制冷剂R115R114RC318的热容都很大,它们作为混合制冷剂的组分都有降低压缩机排气温度的能力。

如共沸混合制冷剂R22/R115(48.8/51.2)在

冷凝温度44C、蒸发温度-12C的情况下,其排气温度为108C,而采用单一制冷剂R22其排气温度为133C;

采用R12时排气温度为112C。

非共沸混合制冷剂的应用与节能非共沸混合制冷剂在蒸发和冷凝时,温度

及气液相组成是不断变化的,正是由于它在蒸发器和冷凝器中的温度变化,在蒸发器和冷凝器中实现了非等温换热,表现出它自己独特的节能特点。

现将正在使用和研究的非共沸混合制冷剂列入表2中。

非共沸混合制冷剂在相变过程中出现各组分的混合与分离现象。

冷凝过程是高沸点组分冷凝和低沸点组分溶解的过程。

其中各组分既要放出自己的液化潜热又要放出混合热,最终使单位制冷剂的冷凝热增大。

而蒸发过程是低沸点组分解吸和高沸点组分蒸发的过程,此时各组分除吸收各自的汽化潜热外,还将吸收相应的分离热,结果使单位制冷剂的吸热量即制冷量增加。

这是制冷系统在没有增加功耗的情况下增加了制冷量。

同时制冷剂的单位容积制冷量也相应提高。

研究表明,使用非共沸混合制冷剂后,制冷系统显著降低了能耗。

例如R22/R114(50/50)非共沸混合制冷剂取代R22用于热泵,制冷系数提高了25%R22/R11(50/50)在冰箱中取代R12后,功耗降低20%

表2已进行研究的非共沸混合制冷剂

用途及研究成果

R12/R11

90/10

用于热泵

R12/R12B1

不定

用于制冷

R12/R13B1

用于制冷及热泵

R12/R114

50/50

用于制冷比R12节能,用于热泵比R12节能16%

R12/R142

R12=5(P70%

用于热泵与纯组分节能10%

R12/R143

R143<

25%

R22>

用于制冷及热泵,主要用于改善循环参数

R22/R11

用于制冷,节能12%

R22/R114

用于热泵,节能25%

R13B1/R151a

用于热泵式空调器

R142/R143

35%

30/70

用于热泵,节能50%

非共沸混合制冷剂在相变过程中其气相和液相间的织成差异影响非共沸混合制冷剂的热力学性能。

在相变过程中出现的气相和液相的组成的明显差异使非共沸混合制冷剂的各组分比较容易混合与分离,从而达到调节混合比的目的。

一些民用空调器,在全年运行期间,外界的环境条件变化相当大,常规使用的单一制冷剂的空调器,如单一制冷剂R22的适用范围很小,它在某一特定气候条件下性能指标非常好。

而在气候条件变化时性能指标就会下降。

非共沸混合制冷剂因其相变时配比随之变化,对变工况运行的适应能力较强,可以根据气候条件变化来调整制冷剂各组分的浓度。

如使用R22/R13B1在夏季制冷时,

以高浓度R22运行,在冬季供暖时以高浓度R13B1运行。

使用这种非共沸混合制冷剂后,空调器全年能在较高的热力学效率下运行,具有显著的节能效果。

另外,采用非共沸混合制冷剂可以实现劳伦兹循环,其吸热平均温度较高,

放热平均温度较低,因此具有较高的卡诺效率。

如图1所示,当制冷剂在(a)给

出的变温热源下工作时,理论上可以实现的逆卡诺循环为(b)中的abcda,而劳

伦兹循环为(c)中的ABCDA由图可以看出,对于逆循环即制冷循环,劳伦兹循环比相应的逆卡诺循环省功。

 

氟利昂制冷剂

已淘汰的氟利昂CFC

RI1、R12、R13

过渡期使用的氟利昂HCFC

R22、R123、R124、R142b

HCFC混合制冷剂

R401、R402、R403系列

可长期选择的氟利昂HFC

R134aR125、R32、R143a

HFC混合制冷剂

R404A、R507A、R410A、R407系列

非氟利昂类制冷剂

R717(NH3)、R290(C3H8)、R1270(C3H6)、

R170(C2H6)、R600a(C4Hlo)、R744(CO2)

非氟利昂类混合制冷剂

R290、R600a

常用制冷剂

用制冷剂知识1制冷

剂R123不在《中国逐步淘汰消耗臭氧层物质国家方案》(1999年)受控的10种物质之内,R123符合《国家方案》的环保要求。

2•哥本哈根国际《议定书》修正案规定R123可使用到2040年,并且中国目前尚未签署《议定书》哥本哈根修正案。

3•环保制冷剂是指当制冷剂散发至大气层后,对臭氧层的破坏大小和对全球气候变暖的影响大小;

R134a对臭氧层没有影,但对全球气候变暖的影响是R123的十几倍,所以《京都议定书》对R134a也作了限定使用;

R123对臭氧层有较小的影响,但对全球气候变暖影响很小。

4•制冷剂R22、R123、R134a均有毒,有毒与环保是两个不同概念,有毒不等于不环保。

目前家用冰箱和家用空调均大量使R22,而安全性完全有保障。

5•制冷剂R123在离心式制冷机工作时蒸发器为负压,不存在制冷剂向外泄漏的问题。

6•中央空调的用户完全不与制冷剂相接触,根本不存在用户安全问题,与用户接触的是水。

7•中南大学制冷方面的教授对R22、R123和R134a的几点意见:

(1)制冷剂的选择与设备生产厂商的技术及设计思路密切相关。

与采用的压缩机型式、热力循环效率、制冷工况、对材料的腐蚀性、与润滑油的相溶性、以及经济性、安全性等有很大关系,可以理解为厂商的“个性”。

(2)有的制冷机组厂家声称采用无氟的制冷剂或如何环保的制冷剂,把冷水机组的销售变成了制冷剂选用的唯一比较,给不太了解制冷剂的用户造成困惑,而忽略了对机组本身的性能参数比较。

(3)目前采用的制冷剂或多或少都含有R22等,是一种混合工质。

(4)另外我国没有承诺何时终止使用R22、R123等制冷剂的时间,关于制冷剂选择的焦虑是没有必要的,用户大可不必把心思花费到考虑选用何种制冷剂上,这些事情应交由设备生产厂商去考虑,因为这些是他们最关心的。

R22、R123、R124、R142b

表2

特性

R134a

R12

R22

分类

HFC

CFC

HCFC

分子式

CH2FCF2

C2C12F

CHC1F2H

分子量

102

102.9

86.48

沸点「C)

-26.2

-29.8

-40.84

液体密度(40C)kg/dm3「

1.147

1.252

1.131V

气体压力(0/40C)bar

2.93/10.16

3.1/9.6

5.0/15.3

临界温度C

101

112

96.13

临界压力bar

40.6

41.6

49.86

毒性ppm

1000

燃烧性

ODP(R1仁1)

1.0

0.05

GWP(CO2=1)

1300

8500

仃00

制冷剂对臭氧层的破坏程度用破坏臭氧层潜值(ODP)表示,其数值以R11的ODP值作为基准值。

制冷剂的排放会产生全球气候变暖的温室效应,其影响程度用全球变暖潜值(GWP)表示。

制冷剂R22、R123和R134a的性质:

几种制冷剂工作状态时的压力(kPa)

制冷剂

名称

蒸发器压力(3.3C)

(kPa)

冷凝器压力

(37.8C)

停机状态(22.2C)

R123

-18.6

41.2

-4.9

224.6

675.7

500.2

446.2

1329.9

851.2

1.R22与R123的比较:

(1)R22与R123同属氢氯氟烃,但R22的臭氧层破坏力是R123的2.5倍,温室效应指数是R123的17倍。

(2)R123是低压制冷剂,工作时蒸发器为负压,冷凝器为0.04mpa停机时机内为—0.004mpa,因此,即便机组泄漏也只存在外界空气进入机组的可能。

(3)R22临界压力比R123高

1300kpa,机组内部提高,泄漏几率提高。

2..R22与R134a勺比较:

(1)R134a的比容是R22的1.47倍,且蒸发潜热小,因此就同排气体积的压缩机而言,R134a机组的冷冻能力仅为R22机组的60%

(2)R134a的热传导率比R22下降10%因此换热器的换热面积增大。

(3)

R134a的吸水性很强,是R22的20倍,因此对R134a机组系统中干燥器的要求较高,以避免系统的冰堵现象。

(4)R134a对铜的腐蚀性较强,使用过程中会发生“镀铜现象”因此系统中必须增加添加剂。

(5)R134a对橡胶类物质的膨

润作用较强,在实际使用过程中,冷媒泄漏率高。

(6)R134a系统需要专用的

压缩机及专用的脂类润滑油,脂类润滑油由于具有高吸水性、高起泡性及高扩

散性,在系统性能的稳定性上劣于R22系统所使用的矿物油。

(7)目前,HFC类冷媒及其专用脂类油的价格高于R22设备的运行成本将上升。

3.R22与R407C的比较:

R407c在热工特性上与R22最为接近,除了在制冷性能、效率上略差以及上述HFC类物质所具有的技术问题之外,还由于这类物质属于非共沸混合物,其成分浓度随温度、压力的变化而变化,这对空调系统的生产、调试及维修都带来一定的困难,对系统热传导性能也会产生一定的影响。

特别是当R407C泄漏时,系统制冷剂在一般情况下均需要全部置换,以保证各混合组分的比例,达到最佳制冷效果。

R134a性状用途:

R134a不含氯原子,对大气臭氧层不起破坏作用;

具有良好的安全性能

(不易燃,不爆炸,无毒,无剌激性无腐性);

R134a的传热性能比较接近,所以制冷系统的改型比较容易。

R134a的传热性能比R12好,是R12的替代

品。

因此制冷剂的用量可大大减少。

在常温下为无色气体,在自身压力下为

无色透明液体。

CFC-12和HFC-134A性能参数很接近,而且CFC-12也溶于酯类油,在维修现场无HFC-134A寸在不得已情况下,CFC-12可用于HFC-134A勺制冷系统(不换压缩机)中,但需更换干燥过滤器,吹净管路,维修后基本不影响使用,但性能匹配不是最佳。

物化性能:

分子式C2H2F4

分子量102.03

沸点,°

C-26.1

临界温度,°

C101.1

临界压力,Mpa4.01

饱和液体密度25C,(g/cm3)1.207

液体比热25C,[KJ/(Kg•C)]1.51

溶解度(水中,25C)%102.03-

破坏臭氧潜能值(ODP0

全球变暖系数值(GWP0.129

临界密度,g/cm30.512

沸点下蒸发潜能,KJ/Kg215.0

R404A生状用途:

R404A由HFC125,HFC-134a和HFC-143混合而成,在常温下为无色气体,

在自身压力下为无色透明液体,是R502的长期替代品,主要用于低、中温制

冷系统物化性能:

分子式:

CHF2CF3/CF3CH2F/CH3CF3

沸点(101.3KPa,~C):

-46.1

临界温度C:

72.4

临界压力(KPa):

3688.7

液体密度g/cm3,25C:

1.045

破坏臭氧潜能值(ODP:

0

全球变暖系数值(GWP:

0.35

质量指标:

外观

无色、不浑浊

气味

浅醚味

纯度>%

99.8%

水份PPMmax

10

酸度PPMmax

0.1

蒸发残留物<%

0.01

R502性状用途:

R502混合制是由HCF—22和CFC-115混合而成,可用作低温制冷剂

物化性能:

分子量111.6

沸点,C-45.4

冰点°

C-

临界温度,C82.1

临界压力,Mpa4.07

饱和液体密度30C,(g/cm3)1.217

C)]0.147

液体比热30C,[KJ/(Kg•C)]1.25

等压蒸气比热(Cp),30C及101.3kPa[KJ/(Kg

破坏臭氧潜能值(ODP0.18

全球变暖系数值(GWP3.8~4.1

临界密度,g/cm30.566

沸点下蒸发潜能,KJ/Kg172.5

无异臭

99.5%

20

1

热泵的分类

根据热泵所利用能源的不同,热泵可作如下分类:

一、空气源热泵

以空气作为源体”空气源热泵,通过冷媒作用,进行能量转移。

目前的产品主要是家用热泵空调器、商用单元式热泵空调机组和热泵冷热水机组。

热泵空调器已占到家用空调器销量的40—50%,年产量为400余万台。

热泵冷热水机组自90年代初开始,在夏热冬冷地区得到了广泛应用,据不完全统计,该地区部分城市中央空调冷热源采用热泵冷热水机组的已占到20—30%,而且

应用范围继续扩大并有向此移动的趋势。

二、水源热泵

以地下水作为冷热"

源体"

,在冬季利用热泵吸收其热量向建筑物供暖,在夏季热泵将吸收到的热量向其排放、实现对建筑物供冷。

虽然目前空气能热泵机组在我国有着相当广泛的应用,但它存在着热泵供热量随着室外气温的降低而减少和结霜问题,而水源热泵克服了以上不足,而且运行可靠性又高,近年来国内应用有逐渐扩大的趋势。

三、地源热泵

地源热泵是以大地为热源对建筑进行空调的技术,冬季通过热泵将大地中的低位热能提高对建筑供暖,同时蓄存冷量,以备夏用;

夏季通过热泵将建筑物内的热量转移到地下对建筑进行降温,同时蓄存热量,以备冬用。

由于其节能、环保、热稳定等特点,引起了世界各国的重视。

欧美等发达国家地源热泵的利用已有几十年的历史,特别是供热方面已积累了大量设计、施工和运行方面的资料和数据。

四、复合热泵

为了弥补单一热源热泵存在的局限性和充分利用低位能量,运用了各种复合热泵。

如空气-空气热泵机组、空气-水热泵机组、水-水热泵机组、水-空气热泵机组、太阳-空气源热泵系统、空气回热热泵、太阳-水源热泵系统、热电水三联复合热泵、土壤-水源热泵系统等。

1、太阳-空气热源热泵系统

太阳-空气热源热泵系统是在传统的空气热源热泵系统的基础上,利用太阳

能热源而新开发的系统。

它可以制冷、供热、供生活热水,是一种利用自然能源、无污染、适用性广、效率高的新型冷热源系统。

2、土壤-水热泵系统

土壤-水热泵(下称土壤热泵)可利用低品位的土壤热能提供热水或向建筑物供暖。

美国、德国及瑞典等北欧国家,已有上万台此类热泵装置在运行,土壤热泵技术已趋成熟,并迅速地加以推广使用。

目前正在制订土壤热泵用于供暖的技术规范。

3、太阳能-水源热泵空调系统

太阳能水源热泵系统由三部分组成,即太阳能集热系统、水源热泵系统和热水供应系统。

其系统是将建筑物的消防水池作为蓄水供应系统。

以解决太阳能的间歇性和不稳定性。

当环路水温高于35C时,水源热泵空调系统同消防水池断开,冷却塔投入运行,当环路水温在15~35C之间时,太阳能作为冷却塔停止运行,生活热水供应的热源收集的太阳能用来加热生活用水;

当环路水温低于15C时,环路与消防水池连通,太阳能水源热泵空调系统吸收太阳能。

若仍有多余的太阳能时,可继续加热生活用水。

热泵除上述四类以外,还有喷射式热泵、吸收式热泵、工质变浓度容量调节式热泵及以CO2为工质的热泵系统

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 经管营销 > 企业管理

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2