煤矿软岩巷道支护强度优化外文文献翻译中英文翻译Word格式.docx

上传人:b****4 文档编号:8247695 上传时间:2023-05-10 格式:DOCX 页数:15 大小:421.98KB
下载 相关 举报
煤矿软岩巷道支护强度优化外文文献翻译中英文翻译Word格式.docx_第1页
第1页 / 共15页
煤矿软岩巷道支护强度优化外文文献翻译中英文翻译Word格式.docx_第2页
第2页 / 共15页
煤矿软岩巷道支护强度优化外文文献翻译中英文翻译Word格式.docx_第3页
第3页 / 共15页
煤矿软岩巷道支护强度优化外文文献翻译中英文翻译Word格式.docx_第4页
第4页 / 共15页
煤矿软岩巷道支护强度优化外文文献翻译中英文翻译Word格式.docx_第5页
第5页 / 共15页
煤矿软岩巷道支护强度优化外文文献翻译中英文翻译Word格式.docx_第6页
第6页 / 共15页
煤矿软岩巷道支护强度优化外文文献翻译中英文翻译Word格式.docx_第7页
第7页 / 共15页
煤矿软岩巷道支护强度优化外文文献翻译中英文翻译Word格式.docx_第8页
第8页 / 共15页
煤矿软岩巷道支护强度优化外文文献翻译中英文翻译Word格式.docx_第9页
第9页 / 共15页
煤矿软岩巷道支护强度优化外文文献翻译中英文翻译Word格式.docx_第10页
第10页 / 共15页
煤矿软岩巷道支护强度优化外文文献翻译中英文翻译Word格式.docx_第11页
第11页 / 共15页
煤矿软岩巷道支护强度优化外文文献翻译中英文翻译Word格式.docx_第12页
第12页 / 共15页
煤矿软岩巷道支护强度优化外文文献翻译中英文翻译Word格式.docx_第13页
第13页 / 共15页
煤矿软岩巷道支护强度优化外文文献翻译中英文翻译Word格式.docx_第14页
第14页 / 共15页
煤矿软岩巷道支护强度优化外文文献翻译中英文翻译Word格式.docx_第15页
第15页 / 共15页
亲,该文档总共15页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

煤矿软岩巷道支护强度优化外文文献翻译中英文翻译Word格式.docx

《煤矿软岩巷道支护强度优化外文文献翻译中英文翻译Word格式.docx》由会员分享,可在线阅读,更多相关《煤矿软岩巷道支护强度优化外文文献翻译中英文翻译Word格式.docx(15页珍藏版)》请在冰点文库上搜索。

煤矿软岩巷道支护强度优化外文文献翻译中英文翻译Word格式.docx

Whenanundergroundroadwayislocatedinsoftrockswhicharetoosofttobereinforcedbyboltingand/orunsuitableforrockinjectionbecauseofrestraintsimposedbyeithertherockmassimpermeabilityorrockmassdeteriorationwhenwaterisencountered,externalrocksupport,suchassteelsets,thereforebecomestheonlyoptionforthestabilitycontroloftheroadway.Underthiscircumstance,thesupportintensitymeansasupportforceactingperunitsurfaceareaofthesurroundingrocksoftheroadway.Insoftrockengineeringpractice,thedesignofasupportpatternforaroadwayinundergroundcoalminingisnormallybasedonrulesofthumb.Inmostcases,heavysupportmeasuresareadoptedtosecureasuccessfulroadway.

Fig.1(a)demonstratestheexcellentconditionofasub-levelroadwaywithinsoftrocksatanundergroundcoalmineinnorthChina,whereanexcessivecapitalcostwasappliedfortheachievementofroadwaystability.Insomecases,suchasaserviceroadwaydriveninsoftrocksatthesamemine(Fig.1(b)),insufficientsupportintensitywasspecifiedasaresultofalackofrelevantexperienceanddesigncodes.Consequently,failureoftheroadwaystabilitywasinevitableandanextracostwasincurredwhenthesubsequentroadwayrepairorrehabilitationwasundertaken.

Thecriticalissueinbothcasesliesinthedeterminationofanoptimalsupportintensitywhichisthefunctionofthegeometryanddimensionofaroadwayanditsgeotechnicalconditionsincludingrockmassproperties,stressconditionsandhydrologicalstatus.

Physicalmodellingusingsimulatedmaterialsbasedonthetheoryofsimilarityprovidesadirectperceptionalmethodologyformininggeomechanicsstudy[1-6].Usingsimulatedmaterialsofthesamecompositiontoconstructaroadwayanditssoftsurroundingrocks,applyingacertainmagnitudeofsimulatedsupportintensitytothesurfaceofaroadwayundersimulatedstressconditions,thethree-dimensionalphysicalmodellingmethoddepictedinthisNoteemonstratesaquantitativesolutionforstrategicdesignofroadwaysupportconcernedwithsoftrocks.Arelationbetweenthesupportintensityanddeformationofthesurroundingrocksofaroadwayhasbeenestablishedafteraseriesofsimulationtestshadbeenconducted.Adiscussionontheoptimalsupportintensityforaroadwayinsoftrocksisalsogiven.

 

Fig.1.Examplesofsuccessfulandunsuccessfulsupportofundergroundroadwayswithinsoftrocks:

(a)Goodconditionofasublevelroadway,(b)Unsuccessfulsupportofaserviceroadway.

2.Featuresofthethree-dimensionalphysicalmodelling

Aphysicalmodellingstudyoftheinteractionbetweensupportintensityandroadwaydeformationwascarriedoutusingthethreedimensionphysicalmodellingsystem(seeFig.2)attheCentralLaboratoryofRockMechanicsandGroundControl,ChinaUniversityofMiningandTechnology.Featuresofthissystemaredescribedinthefollowingsub-sections.

Fig.2.Three-dimensionalloadedphysicalmodellingsystemattheCentralLaboratoryofRockMechanicsandGroundControl,ChinaUniversityofMiningandTechnology.

2.1.Sizeofthephysicalmodel

Theeffectivesizeofaphysicalmodelis1000mmwide,1000mmhighand200mmthick.

2.2.Threedimensionalactiveloadingcapability

Sixflatjacksareusedtoapplyloadstothesixsidesofthephysicalmodelintheformofarectangularprism.Eachflatjackwasdesignedtocoverthefullareaofoneofthesixsidesandbecapableofapplyingapressureofupto10MPaontothesurfaceofthesimulatedrockmass.Thismeansthattheflatjacksarecapableofapplyinganactiveloadofupto1000tonnesand200tonnessimultaneouslyonthefrontandbackfacets,thetopandbottom,andthetwosidefacetsofamodel,respectively.

2.3.Long-termcontinuousloadingcapability

Ahigh-pressure,nitrogen-operated,hydraulicpressurestabilisingunitwasemployedtomaintainaconsistentmagnitudeofloadappliedtothemodelsothatthephysicalmodellingtestisabletolastcontinuouslyforweeks,monthsorevenyearswithoutinterruption.Thisfeatureensuresthatthestudyofthelong-termrheologicalbehaviourofsoftrockscanbecarriedout.

3.Physicalmodellingtests

Physicalmodellingofanundergroundroadway/tunnelwithinsoftrockswithahydrostaticstressconditionwascarriedout.Thesamesimulatedmaterialswererepeatedlyusedsixtimestoconstructsixphysicalmodels.Eachroadwaymodelwasprovidedwithadifferentmagnitudeofsupportintensity.

3.1.Geotechnicalconditionsfortheprototypeandthemodellingscale

Aspecifiedundergroundroadwaywithinsoftrockswasassumedtobetheprototypeforthemodellingstudy.Detailedgeotechnicalconditionsoftheroadwayanditssurroundingrocksare:

circularroadwaywithadiameter(D)of4.5mandcross-sectionalareaof16m2;

UCS(Rc)ofthesurroundingrockwas20MPa;

bulkdensityofthesurroundingrockwas2500kg/m3;

depthoftheroadwaylocationwas500mbelowsurface;

rockmassstress(s0)was12.5MPainalldirections;

supportintensity(pa)tobeappliedtotheroadwaywas0.1,0.2,0.3,0.4,0.5and0.6MPa,respectively.

Thegeotechnicalmodellingscale(Cl)determinedwas1:

25.Thebulkdensity(gm)ofthesimulatedrockmassmaterialswas1600kg/m3.Therefore,alltherelatedsimulationconstantsare:

similarityconstantforbulkdensity:

Cg¼

1600/2500=0.64;

similarityconstantforstrength:

Cs¼

ClCg¼

0:

256;

similarityconstantforload:

CF¼

CgC1¼

4:

09610ÿ

5;

similarityconstantfortime:

Ct¼

Cl:

2:

Geotechnicalconditionsofthesimulatedrockmass

androadwaywerederivedfromthoseoftheprototyperockmassaspresentedbelow:

strengthofthesimulatedrockmass:

Rm=RcCs=0.512;

diameterofthesimulatedroadway:

Dm=DCl=180mm;

loadintensityonthefacetsofthemodel:

pm=s0Cs=0.32MPa;

Simulatedsupportintensity:

pam=paCs=0.00256,0.00516,0.00768,0.01024,0.0128and0.01536MPa;

respectively.

3.2.Realizationofsupportintensityinphysicalmodelling

Duetotherestraintsofthesmalldimensionsofthemodelroadwayonthesimulationofsupportstructure,thesupportpatternandstructurewereunabletobesimulated.Instead,anequivalentsupportintensitywassimulatedandappliedtothesurfaceofthesurrounding

rockofthemodelroadway.AStaticWaterSupportandDeformationMeasurementSystem(SWSDMS)wasdesignedspecially.Fig.3illustratestheSWSDMSbeinginstalledinthemodelroadway.ThemechanismofSWSDMSistouse4separatewatercapsulestoapplyasupportintensitytothesurfaceoftheroadwayroof,twosidewallsandfloor.Fourrubbertubes,eachofwhichwaslinkedtoawatercapsuleandfilledwithwater,wereusedtogenerateawaterpressureatthecapsule/rockinterfaceandmeasureitthroughthewaterlevelreading.

Acertainconstantsimulatedsupportintensitywasachievedbyapplyingacertainheightofstaticwaterpressure.Achangetosupportintensitycouldbemadebychangingthewaterheightintherubbertube.Thevolumechangeofeachofthefourwatercapsuleswasmeasuredattheduetimebycollecting

andweighingthewateroverflow.Thevolumeofwatercomingfromeachofthefourwatercapsuleswasusedtocalculatetheradialdeformationofroadwaysurroundingrock,i.e.,roofsubsidence,wall-to-wallclosureandfloorheave.Theproposedsimulatedsupportintensities,i.e.,Pam¼

00256,0.00516,0.00768,0.01024,0.0128and0.01536MPa,wereachievedbyadjustingthestaticwaterlevelto256,516,768,1024,1280and1536mmhigh,respectively.

Fig.3.StaticWaterSupportandDeformationMeasurementSystem(SWSDMS)beingaccommodatedinaroadwaymodelinthereal3-Dloadedphysicalmodellingsystem.

3.3.Constructionofphysicalmodel

Thecompositionsandpropertiesofmaterialstobeusedfortheconstructionofphysicalmodelswerestudiedpriortothephysicalmodelconstruction.Giventhesignificantrheologicaldeformationofroadwaysexcavatedinsoftrock,sandandparaffinwaxwerechosenforthesimulatedsoftrock.Thepropertiesofaseriesofsand/paraffinwaxmixtureswerestudiedinlaboratoryandarepresentedinTable1.

Table1Compositionsandpropertiesofsand/paraffinwaxmixtures

Accordingtothegeotechnicalconditionsoftheprototyperockmassandthemodelscale,amixtureofsand/paraffinwaxof100:

3wasselectedtoconstructtherockmassmodel.Theproceduresinvolvedinthemodelconstructionincludecoldmixingofthesandandparaffinwax,ovenheatingthesand/waxmixtureandconstructingthephysicalmodelusingthehotsand/waxmixture.

3.4.Processofphysicalmodelling

Therealprocessofanundergroundroadwayexcavation,supportinstallationanddeformationofthesurroundingrockswithtimewassimulatedinthelaboratoryphysicalmodelling.Afterthemodelhadcooleddown,prestressingthemodel,excavationoftheroadwayunderpressure,installationoftheSWSDMSdeviceandmeasurementoftheroadwaydeformationwerecarriedoutstepbystep.Thewholeprocessofmodellingwass

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > IT计算机 > 电脑基础知识

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2