一些解决TSP问题算法源代码Word格式.docx

上传人:b****2 文档编号:827542 上传时间:2023-04-29 格式:DOCX 页数:79 大小:38.89KB
下载 相关 举报
一些解决TSP问题算法源代码Word格式.docx_第1页
第1页 / 共79页
一些解决TSP问题算法源代码Word格式.docx_第2页
第2页 / 共79页
一些解决TSP问题算法源代码Word格式.docx_第3页
第3页 / 共79页
一些解决TSP问题算法源代码Word格式.docx_第4页
第4页 / 共79页
一些解决TSP问题算法源代码Word格式.docx_第5页
第5页 / 共79页
一些解决TSP问题算法源代码Word格式.docx_第6页
第6页 / 共79页
一些解决TSP问题算法源代码Word格式.docx_第7页
第7页 / 共79页
一些解决TSP问题算法源代码Word格式.docx_第8页
第8页 / 共79页
一些解决TSP问题算法源代码Word格式.docx_第9页
第9页 / 共79页
一些解决TSP问题算法源代码Word格式.docx_第10页
第10页 / 共79页
一些解决TSP问题算法源代码Word格式.docx_第11页
第11页 / 共79页
一些解决TSP问题算法源代码Word格式.docx_第12页
第12页 / 共79页
一些解决TSP问题算法源代码Word格式.docx_第13页
第13页 / 共79页
一些解决TSP问题算法源代码Word格式.docx_第14页
第14页 / 共79页
一些解决TSP问题算法源代码Word格式.docx_第15页
第15页 / 共79页
一些解决TSP问题算法源代码Word格式.docx_第16页
第16页 / 共79页
一些解决TSP问题算法源代码Word格式.docx_第17页
第17页 / 共79页
一些解决TSP问题算法源代码Word格式.docx_第18页
第18页 / 共79页
一些解决TSP问题算法源代码Word格式.docx_第19页
第19页 / 共79页
一些解决TSP问题算法源代码Word格式.docx_第20页
第20页 / 共79页
亲,该文档总共79页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

一些解决TSP问题算法源代码Word格式.docx

《一些解决TSP问题算法源代码Word格式.docx》由会员分享,可在线阅读,更多相关《一些解决TSP问题算法源代码Word格式.docx(79页珍藏版)》请在冰点文库上搜索。

一些解决TSP问题算法源代码Word格式.docx

前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法

决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。

  第二步是计算与新解所对应的目标函数差。

因为目标函数差仅由变换部分产生,所以目标函数差的计算最好按增量计算。

事实表明,对大多数应用而言,这是计算目标函数差的最快方法。

  第三步是判断新解是否被接受,判断的依据是一个接受准则,最常用的接受准则是Metropo1is准则:

0则接受S′作

为新的当前解S,否则以概率exp(-Δt′/T>

接受S′作为新的当前解S。

  第四步是当新解被确定接受时,用新解代替当前解,这只需将当前解中对应于产生新解时的变换部分予以实现,同时修正

目标函数值即可。

此时,当前解实现了一次迭代。

可在此基础上开始下一轮实验。

而当新解被判定为舍弃时,则在原当前解的

基础上继续下一轮实验。

  模拟退火算法与初始值无关,算法求得的解与初始解状态S(是算法迭代的起点>

无关;

模拟退火算法具有渐近收敛性,已在

理论上被证明是一种以概率l收敛于全局最优解的全局优化算法;

模拟退火算法具有并行性。

3.5.2模拟退火算法的简单应用

  作为模拟退火算法应用,讨论货郎担问题(TravellingSalesmanProblem,简记为TSP>

设有n个城市,用数码1,…,n代表

城市i和城市j之间的距离为d(i,j>

i,j=1,…,n.TSP问题是要找遍访每个域市恰好一次的一条回路,且其路径总长度为最

短.。

  求解TSP的模拟退火算法模型可描述如下:

  解空间解空间S是遍访每个城市恰好一次的所有回路,是{1,……,n}的所有循环排列的集合,S中的成员记为(w1,w2,…

…,wn>

,并记wn+1=w1。

初始解可选为(1,……,n>

  目标函数此时的目标函数即为访问所有城市的路径总长度或称为代价函数:

  我们要求此代价函数的最小值。

  新解的产生随机产生1和n之间的两相异数k和m,若k<

m,则将

  (w1,w2,…,wk,wk+1,…,wm,…,wn>

  变为:

  (w1,w2,…,wm,wm-1,…,wk+1,wk,…,wn>

.

  如果是k>

  (wm,wm-1,…,w1,wm+1,…,wk-1,wn,wn-1,…,wk>

  上述变换方法可简单说成是“逆转中间或者逆转两端”。

  也可以采用其他的变换方法,有些变换有独特的优越性,有时也将它们交替使用,得到一种更好方法。

  代价函数差设将(w1,w2,……,wn>

变换为(u1,u2,……,un>

则代价函数差为:

根据上述分析,可写出用模拟退火算法求解TSP问题的伪程序:

ProcedureTSPSA:

 begin

  init-of-T。

{T为初始温度}

  S={1,……,n}。

{S为初始值}

  termination=false。

  whiletermination=false

   begin

    fori=1toLdo

      begin

        generate(S′formS>

{从当前回路S产生新回路S′}

        Δt:

=f(S′>

>

-f(S>

{f(S>

为路径总长}

        IF(Δt<

0>

OR(EXP(-Δt/T>

Random-of-[0,1]>

        S=S′。

        IFthe-halt-condition-is-TRUETHEN

        termination=true。

      End。

    T_lower。

   End。

 End

  模拟退火算法的应用很广泛,可以较高的效率求解最大截问题(MaxCutProblem>

、0-1背包问题(ZeroOneKnapsack

Problem>

、图着色问题(GraphColouringProblem>

、调度问题(SchedulingProblem>

等等。

3.5.3模拟退火算法的参数控制问题

  模拟退火算法的应用很广泛,可以求解NP完全问题,但其参数难以控制,其主要问题有以下三点:

温度T的初始值设置问题。

  温度T的初始值设置是影响模拟退火算法全局搜索性能的重要因素之一、初始温度高,则搜索到全局最优解的可能性大,但

因此要花费大量的计算时间;

反之,则可节约计算时间,但全局搜索性能可能受到影响。

实际应用过程中,初始温度一般需要

依据实验结果进行若干次调整。

退火速度问题。

  模拟退火算法的全局搜索性能也与退火速度密切相关。

一般来说,同一温度下的“充分”搜索(退火>

是相当必要的,但这

需要计算时间。

实际应用中,要针对具体问题的性质和特征设置合理的退火平衡条件。

温度管理问题。

  温度管理问题也是模拟退火算法难以处理的问题之一。

实际应用中,因为必须考虑计算复杂度的切实可行性等问题,常采

用如下所示的降温方式:

T(t+1>

=k×

T(t>

式中k为正的略小于1.00的常数,t为降温的次数

使用SA解决TSP问题的Matlab程序:

functionout=tsp(loc>

%TSPTravelingsalesmanproblem(TSP>

usingSA(simulatedannealing>

.

%TSPbyitselfwillgenerate20citieswithinaunitcubeand

%thenuseSAtoslovethisproblem.

%

%TSP(LOC>

solvethetravelingsalesmanproblemwithcities'

%coordinatesgivenbyLOC,whichisanMby2matrixandMis

%thenumberofcities.

%Forexample:

%loc=rand(50,2>

%tsp(loc>

ifnargin==0,

%ThefollowingdataisfromthepostbyJenniferMyers(jmyers@nwu.

edu>

%tocomp.ai.neural-nets.It'

sobtainedfromthefigurein

%Hopfield&

Tank'

s1985paperinBiologicalCybernetics

%(Vol52,pp.141-152>

loc=[0.3663,0.9076。

0.7459,0.8713。

0.4521,0.8465。

0.7624,0.7459。

0.7096,0.7228。

0.0710,0.7426。

0.4224,0.7129。

0.5908,0.6931。

0.3201,0.6403。

0.5974,0.6436。

0.3630,0.5908。

0.6700,0.5908。

0.6172,0.5495。

0.6667,0.5446。

0.1980,0.4686。

0.3498,0.4488。

0.2673,0.4274。

0.9439,0.4208。

0.8218,0.3795。

0.3729,0.2690。

0.6073,0.2640。

0.4158,0.2475。

0.5990,0.2261。

0.3927,0.1947。

0.5347,0.1898。

0.3960,0.1320。

0.6287,0.0842。

0.5000,0.0396。

0.9802,0.0182。

0.6832,0.8515]。

end

NumCity=length(loc>

%Numberofcities

distance=zeros(NumCity>

%Initializeadistancematrix

%Fillthedistancematrix

fori=1:

NumCity,

forj=1:

distance(i,j>

=norm(loc(i,-loc(j,>

%Togenerateenergy(objectivefunction>

frompath

%path=randperm(NumCity>

%energy=sum(distance((path-1>

*NumCity+[path(2:

NumCity>

path(1>

]>

%FindtypicalvaluesofdE

count=20。

all_dE=zeros(count,1>

count

path=randperm(NumCity>

energy=sum(distance((path-1>

path(1>

new_path=path。

index=round(rand(2,1>

*NumCity+.5>

inversion_index=(min(index>

:

max(index>

new_path(inversion_index>

=fliplr(path(inversion_index>

all_dE(i>

=abs(energy-...

sum(sum(diff(loc([new_pathnew_path(1>

],>

'

.^2>

dE=max(all_dE>

temp=10*dE。

%Choosethetemperaturetobelargeenough

fprintf('

Initialenergy=%f\n\n'

energy>

%Initialplots

out=[pathpath(1>

]。

plot(loc(out(,1>

loc(out(,2>

'

r.'

'

Markersize'

20>

axissquare。

holdon

h=plot(loc(out(,1>

holdoff

MaxTrialN=NumCity*100。

%Max.#oftrialsata

temperature

MaxAcceptN=NumCity*10。

%Max.#ofacceptancesata

StopTolerance=0.005。

%Stoppingtolerance

TempRatio=0.5。

%Temperaturedecreaseratio

minE=inf。

%Initialvalueformin.energy

maxE=-1。

%Initialvalueformax.energy

%Majorannealingloop

while(maxE-minE>

/maxE>

StopTolerance,

maxE=0。

TrialN=0。

%Numberoftrialmoves

AcceptN=0。

%Numberofactualmoves

whileTrialN<

MaxTrialN&

AcceptN<

MaxAcceptN,

=

fliplr(path(inversion_index>

new_energy=sum(distance(...

(new_path-1>

*NumCity+[new_path(2:

new_path(1>

ifrand<

exp((energy-new_energy>

/temp>

%

accept

it!

energy=new_energy。

path=new_path。

minE=min(minE,energy>

maxE=max(maxE,energy>

AcceptN=AcceptN+1。

TrialN=TrialN+1。

%Updateplot

set(h,'

xdata'

loc(out(,1>

ydata'

drawnow。

%Printinformationincommandwindow

temp.=%f\n'

temp>

tmp=sprintf('

%d'

path>

path=%s\n'

tmp>

energy=%f\n'

energy>

[minEmaxE]=[%f%f]\n'

minE,maxE>

[AcceptNTrialN]=[%d%d]\n\n'

AcceptN,TrialN>

%Lowerthetemperature

temp=temp*TempRatio。

%Printsequentialnumbersinthegraphicwindow

text(loc(path(i>

1>

+0.01,loc(path(i>

2>

+0.01,int2str(i>

...

fontsize'

8>

end

又一个相关的Matlab程序

function[X,P]=zkp(w,c,M,t0,tf>

[m,n]=size(w>

L=100*n。

t=t0。

clearm。

x=zeros(1,n>

xmax=x。

fmax=0。

whilet>

tf

fork=1:

L

xr=change(x>

gx=g_0_1(w,x>

gxr=g_0_1(w,xr>

ifgxr<

=M

fr=f_0_1(xr,c>

f=f_0_1(x,c>

df=fr-f。

ifdf>

x=xr。

iffr>

fmax

fmax=fr。

xmax=xr。

else

p=rand。

ifp<

exp(df/t>

t=0.87*t

P=fmax。

X=xmax。

%下面的函数产生新解

function[d_f,pi_r]=exchange_2(pi0,d>

[m,n]=size(d>

u=rand。

u=u*(n-2>

u=round(u>

ifu<

2

u=2。

ifu>

n-2

u=n-2。

v=rand。

v=v*(n-u+1>

v=round(v>

ifv<

1

v=1。

v=v+u。

ifv>

n

v=n。

pi_1(u>

=pi0(v>

=pi0(u>

(u-1>

pi_1(k>

=pi0(k>

(u+1>

(v-u-1>

pi_1(u+k>

=pi0(v-k>

fork=(v+1>

d_f=0。

d_f=d(pi0(u-1>

pi0(v>

+d(pi0(u>

pi0(v+1>

fork=(u+1>

d_f=d_f+d(pi0(k>

pi0(k-1>

-d(pi0(v>

d_f=d_f-d(pi0(u-1>

pi0(u>

d_f=d_f-d(pi0(k-1>

pi0(k>

pi0(1>

-d(pi0(u-1>

d_f=d_f-d(pi0(k>

pi_r=pi_1。

遗传算法GA

遗传算法:

旅行商问题(travelingsalemanproblem,简称tsp>

已知n个城市之间的相互距离,现有一个推销员必须遍访这n个城市,并且每个城市只能访问一次,最后又必须返回出发城市。

如何安排他对这些城市的访问次序,可使其旅行路线的总长度最短?

用图论的术语来说,假设有一个图g=(v,e>

,其中v是顶点集,e是边集,设d=(dij>

是由顶点i和顶点j之间的距离所组成的距离矩阵,旅行商问题就是求出一条通过所有顶点且每个顶点只通过一次的具有最短距离的回路。

这个问题可分为对称旅行商问题(dij=dji,,任意i,j=1,2,3,…,n>

和非对称旅行商问题(dij≠dji,,任意i,j=1,2,3,…,n>

若对于城市v={v1,v2,v3,…,vn}的一个访问顺序为t=(t1,t2,t3,…,ti,…,tn>

其中ti∈v(i=1,2,3,…,n>

,且记tn+1=t1,则旅行商问题的数学模型为:

minl=σd(t(i>

t(i+1>

<

i=1,…,n)

旅行商问题是一个典型的组合优化问题,并且是一个np难问题,其可能的路径数目与城市数目n是成指数型增长的,所以一般很难精确地求出其最优解,本文采用遗传算法求其近似解。

初始化过程:

用v1,v2,v3,…,vn代表所选n个城市。

定义整数pop-size作为染色体的个数,并且随机产生pop-size个初始染色体,每个染色体为1到18的整数组成的随机序列。

适应度f的计算:

对种群中的每个染色体vi,计算其适应度,f=σd(t(i>

评价函数eval(vi>

用来对种群中的每个染色体vi设定一个概率,以使该染色体被选中的可能性与其种群中其它染色体的适应性成比例,既通过轮盘赌,适应性强的染色体被选择产生后台的机会要大,设alpha∈(0,1>

,本文定义基于序的评价函数为eval(vi>

=alpha*(1-alpha>

.^(i-1>

[随机规划与模糊规划]

选择过程:

选择过程是以旋转赌轮pop-size次为基础,每次旋转都为新的种群选择一个染色体。

赌轮是按每个染色体的适应度进行选择染色体的。

step1、对每个染色体vi,计算累计概率qi,q0=0。

qi=σeval(vj>

j=1,…,i。

i=1,…pop-size.

step2、从区间(0,pop-size>

中产生一个随机数r;

step3、若qi-1<

r<

qi,则选择第i个染色体;

step4、重复step2和step3共pop-size次,这样可以得到pop-size个复制的染色体。

grefenstette编码:

因为常规的交叉运算和变异运算会使种群中产生一些无实际意义的染色体,本文采用grefenstette编码《遗传算法原理及应用》可以避免这种情况的出现。

所谓的grefenstette编码就是用所选队员在未选<

不含淘汰)队员中的位置,如:

815216107431114612951813171

对应:

81421386325734324221。

交叉过程:

本文采用常规单点交叉。

为确定交叉操作的父代,从到pop-size重复以下过程:

从[0,1]中产生一个随机数r,如果r<

pc,则选择vi作为一个父代。

将所选的父代两两组队,随机产生一个位置进行交叉,如:

81421386325734324221

6123568563185633211

交叉后为:

81421386325185633211

612356856373

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 求职职场 > 简历

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2