SSW车载移动测量系统及其应用Word文档下载推荐.docx

上传人:wj 文档编号:8456263 上传时间:2023-05-11 格式:DOCX 页数:13 大小:3.44MB
下载 相关 举报
SSW车载移动测量系统及其应用Word文档下载推荐.docx_第1页
第1页 / 共13页
SSW车载移动测量系统及其应用Word文档下载推荐.docx_第2页
第2页 / 共13页
SSW车载移动测量系统及其应用Word文档下载推荐.docx_第3页
第3页 / 共13页
SSW车载移动测量系统及其应用Word文档下载推荐.docx_第4页
第4页 / 共13页
SSW车载移动测量系统及其应用Word文档下载推荐.docx_第5页
第5页 / 共13页
SSW车载移动测量系统及其应用Word文档下载推荐.docx_第6页
第6页 / 共13页
SSW车载移动测量系统及其应用Word文档下载推荐.docx_第7页
第7页 / 共13页
SSW车载移动测量系统及其应用Word文档下载推荐.docx_第8页
第8页 / 共13页
SSW车载移动测量系统及其应用Word文档下载推荐.docx_第9页
第9页 / 共13页
SSW车载移动测量系统及其应用Word文档下载推荐.docx_第10页
第10页 / 共13页
SSW车载移动测量系统及其应用Word文档下载推荐.docx_第11页
第11页 / 共13页
SSW车载移动测量系统及其应用Word文档下载推荐.docx_第12页
第12页 / 共13页
SSW车载移动测量系统及其应用Word文档下载推荐.docx_第13页
第13页 / 共13页
亲,该文档总共13页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

SSW车载移动测量系统及其应用Word文档下载推荐.docx

《SSW车载移动测量系统及其应用Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《SSW车载移动测量系统及其应用Word文档下载推荐.docx(13页珍藏版)》请在冰点文库上搜索。

SSW车载移动测量系统及其应用Word文档下载推荐.docx

其标称技术参数如下:

n测量距离范围:

2.2m-300m;

n激光扫描点频率:

50-200KHZ;

n扫描角度:

360°

n测距精度:

2cm/100m;

n测角精度:

0.1mRad;

n激光扫描线频率:

30-50scans/sec。

IMU通过陀螺仪和加速度计采集载体在三个坐标分量上的角速度和加速度量,积分计算得到载体姿态和位置信息。

系统采用航天三院成熟产品POS90和POS50。

此系列IMU采用激光陀螺仪组合而成,精度高,初始对准时间短。

其主要性能指标如下:

n初始姿态精度:

≤0.01°

n初始航向精度:

≤0.05°

sec(L)(L为当地纬度);

n姿态航向保持:

≤0.05°

/h;

n初始对准时间:

≤5min;

n数据输出频率:

200HZ。

系统通过集成的CCD相机获取目标纹理信息,可采用面阵相机或线阵相机。

面阵相机的标定、影像畸变改正技术已比较成熟,但其获取的大部分影像对目标的入射角与点云数据不相同,到边缘部分差别会很大,这就导致生成的彩色点云中部分数据不正确。

线阵相机与激光扫描仪工作方式基本一致,扫描线基本平行,目标遮挡情况基本一致,彩色点云融合正确率高。

(二)系统工作原理

系统通过GPS使激光扫描仪、IMU、相机和里程计统一为同一时间系统——GPS时间系统,使得系统每时刻数据协同一致。

里程计、GPS和IMU采集的数据用来进行组合导航,获取系统每时刻的姿态和位置数据。

激光扫描仪和相机用来获取目标地物的坐标和影像数据,结合姿态数据融合生成带有绝对坐标的彩色点云数据。

系统工作原理和各传感器间数据流转关系如图2所示。

三SSW系统关键技术

SSW系统的关键技术主要有:

①系统各传感器的机械集成、时间同步;

②数据采集传感器的标定技术;

③传感器间相对外方位元素标定;

④高精度彩色点云解算。

(一)传感器的机械集成、时间同步

系统的集成是系统数据采集和解算的基础。

机械集成就是将各传感器按设计的位置和姿态机械安装在一起。

机械集成方案有多种,不同方案会产生不同的作用和功效,系统正常作业时采用激光扫描仪倾斜工位,以保证能够采集到车下方的地面数据。

GPS

IMU

LS

目标地物

组合导航

扫描数据

时间流

数据流

相机

影像数据

彩色点云

里程计

图2.各传感器间数据流转关系

时间同步是移动测量系统各传感器间联系的纽带,是系统标定和数据解算的基础。

时间同步技术是系统集成的核心技术之一。

各传感器以GPS时间为主线,形成一个有机的统一体。

系统时间同步方案为:

GPS输出秒脉冲PPS(PulsesPerSecond)和时间标签给IMU和激光扫描仪,实现IMU和激光扫描仪与GPS时间对齐(同步);

激光扫描仪发出带有时间信息的外触发脉冲给线阵相机,实现线阵相机的曝光时间与GPS时间对齐;

里程计脉冲直接以事件标记形式打入GPS,GPS对其记数的同时记录了每个脉冲的GPS时间;

里程计每隔一定脉冲数(定距)为面阵相机输出触发脉冲,实现面阵相机的定距离曝光;

面阵相机的Flash信号记录到GPS,实现面阵相机时间与GPS的同步。

在数据采集过程中,各传感器在采集数据的同时,相互间会有一定的数据交换和传递,以保证各传感器间的时间同步和数据采集的正确性。

(二)数据采集传感器的标定技术

单个传感器的测量精度直接影响着系统的最终测量结果。

数据采集传感器的标定是其测量精度的保证,是系统研究的关键技术之一。

激光扫描仪和线阵相机都靠扫描实现数据采集,只有动态情况下采集的数据才能够识别目标地物特征信息,才具有实际意义,这就大大增加了它们标定的难度。

激光扫描仪的标定包括距离测量参数和角度测量改正参数两项标定内容。

利用激光扫描仪的竖直工位超慢速扫描实现无需姿态的激光动态扫描,进而有效解决激光扫描仪的距离测量和角度测量参数的标定问题。

面阵相机一般通过大型室外检校场来进行,相关的标定技术比较成熟。

线阵相机的扫描成像特性使其标定工作非常困难,线阵相机标定的目的是消除相机镜头畸变和CCD安置误差,使影像、投影中心和目标点间处于严格的“共线”状态。

线阵相机标定的核心是准确确定实际拍摄的影像与目标点间的对应关系,用镜头畸变模型求取相关改正参数。

线阵相机与激光扫描仪的工作方式基本一致,均为线阵推扫。

因此将线阵相机与激光扫描仪平行绑定,利用激光扫描仪测量角度实现线阵相机的标定。

(三)传感器间相对外方位元素标定

系统各传感器按一定位置关系安装后,传感器间(激光扫描仪与IMU、相机与IMU)存在一个固定的相对姿态,即他们之间的相对外方位元素。

通过直接测量方式是无法精确获取传感器间的相对外方位元素的,而这些参数直接影响着测量结果。

传感器间相对外方位元素标定是通过扫描检校场来完成的。

具体原理是:

系统扫描检校场后,提取检校场内特征控制点的点云坐标,将其与常规测量坐标构成测量点对,建立误差方程式,迭代求取参数,实现相对外方位元素的高精度标定。

也可以利用同一条路往返扫点云中线状地物(如电线杆)关系(重合或平行),对系统参数进行标定。

沿扫描方向上电线杆不重合主要是由于翻滚夹角不正确引起的,对夹角进行微调,直至他们重合或平行。

垂直于扫描方向上电线杆不重合主要是由于俯仰角不正确引起的,通过调整,使其重合或平行。

由于两参数计算时相互影响,调整时要反复进行。

(四)点云与影像的高精度融合技术

将点云数据赋予RGB值,对点云数据的解译、分类和一些细节特征的表达都有非常大的帮助。

对彩色点云数据生产,国内外学者从理论和生产上都进行了许多研究。

主要思路有:

①通过一些技术方案使两传感器同心(激光扫描仪中心和相机投影中心重合),匹配影像和点云中的同名特征点,恢复相机拍摄时的姿态,使对应两传感器投影角度实现数据融合。

②在激光扫描的同时,用面阵相机进行立体摄影,构建立体像对,在同一坐标系内与激光扫描点云进行邻近融合。

这些方法大多是针对地面静态扫描仪或小区域范围的数据采集,数据采集和处理复杂,难以满足复杂的动态街道测量要求。

SSW系统在点云数据采集的同时采集了目标物的影像数据,利用POS系统获取的姿态数据可以直接或间接地计算出相机曝光时刻的姿态数据,影像数据和点云数据的坐标系统就统一起来了,利用共线条件式可以使点云数据与影像数据准确融合。

四DY-2点云工作站

点云数据浏览、分类、特征信息提取、矢量数据生产也是SSW系统应用的重要组成部分。

点云数据是依时间顺序进行采集的,数据只是一些离散的坐标值,与目标物的特征、结构、属性没有任何关联且数据量很大。

点云数据的使用和深层信息的挖掘需要一套强大的点云数据处理、浏览等功能的软件来实现。

DY-2点云测量工作站就是在这样的背景下研究开发的点云数据处理系统。

DY-2基于C++开发语言与系统底层API,使用OpenGL三维图形渲染接口,以及成熟的第三方工具作为依赖,从而实现跨平台的代码设计。

这其中,一些可用的第三方工具包括开源的数据分析处理工具GDAL、PROJ等,它们在数据处理方面的卓越能力,已经被各大公司和研究机构所广泛认可,并成为ArcGIS、SuperMap、Skyline等主流GIS软件的底层依赖库支持。

DY-2的底层核心组件包括三维场景组织结构的设计、用户漫游和交互功能的开发,大规模场景数据的动态调度与管理,立体显示支持,以及数据分析的功能函数等。

系统设计框架如图3所示。

图3DY-2系统设计框架图

DY-2的用户层核心组件,主要包括海量点云数据处理模块、三维场景构建及管理模块、向量测图模块、向量编辑模块、成果输出模块等。

DY-2点云测量工作站软件工作界面如图4所示。

图4.DY-2点云测量工作站界面

界面常驻信息有:

①当前图层信息。

②当前三维测标所在位置,即测标的三维坐标信息。

③国标分类信息。

④机助测图实时信息。

包括:

当前图层名称、当前线型及颜色、当前画笔状态眼基线长度、立体观察方式(真立体、透视立体)、正射观察时视线方向(向上、向下)等。

⑤实时编辑菜单。

点云场景显示主要有:

点云数据的彩色显示(依RGB信息渲染)、点云数据灰度显示(依反射强度渲染)、点云数据的二值显示(依有无渲染)以及点云数据的假彩色显示(依高程值渲染、依深度渲染),如图5所示。

五系统应用试验

(一)道路高精度高程测量

近几年,随着我国公路建设的快速推进,我国公路网建设已基本完成。

公路建设进入以公路大修和改扩为主的局面。

公路大修与改扩建工程对公路路面高程测量精度要求很高,通常采用水准测量方式来完成路面高程测量任务。

而一般的公路都非常繁忙,车辆多、速度快,直接在路面上作业非常危险。

目前还没有较好的方法能够替代路面的水准测量工作。

将车载移动测量系统应用于公路路面高精度高程测量是一件十分有意义的工作,也是系统应用中最困难的一项工作。

图5.DY-2点云场景显示(依次为彩色、二值、黑白)

试验区位于北京市南二环永定门桥至左安门之间,全长约3.5公里。

道路一侧高楼林立,另一侧为护城河水面,路两边树木较多,GPS信号失锁较严重,是一段典型的城区内道路,车流量很大,常规作业危险、困难。

图6.北京南二环点云数据

大地定向后,重新计算点云数据,量测测区内的检查点,统计测量精度。

利用测区内的高程点进行大地定向,定向精度统计如表1所示。

表1大地定向精度统计单位:

m

点名

RMS

2G55

-0.019

2G62

-0.001

2G70

-0.013

2G24

0.041

2G56

-0.016

2G63

-0.012

2G71

0.000

2G25

0.030

2G57

-0.008

2G64

-0.010

2G72

0.003

2G36

0.035

2G58

2G65

2G20

-0.003

2G38

0.042

2G59

0.019

2G67

2G21

0.011

2G40

0.010

2G60

2G68

-0.018

2G22

-0.009

2G41

-0.017

2G61

-0.027

2G69

2G23

(二)ADAS系统道路导航数据采集

高级汽车辅助驾驶系统(ADAS:

Advanced 

Driver 

AssistanceSystems 

)通过多传感器探测汽车周围的环境状况和信息,来帮助驾驶员更好地驾驶车辆,减少事故的高科技多传感器集成系统。

导航地图数据是ADAS系统的重要组成部分。

城市建设日新月异,导航地图数据的快速采集和更新是ADAS系统正常工作的基础。

车载移动测量系统能够快速精确获取道路的各种要素信息,是道路地理信息数据快速采集和更新的利器。

受相关单位委托,我们对SSW系统快速采集道路中线路面三维坐标数据进行了试验。

试验时考虑白天市内道路车多人多,数据采集均在晚上进行。

白天处理解算数据。

图7、图8为试验的部分行车轨迹和点云影像。

图7导航路线扫描轨迹

图8导航路线点云影像

试验表明,这种作业方式,每天能够采集约20~50公里的道路数据,数据处理能够当天完成。

图9所示为采集的道路中线坐标点。

图9道路中线坐标点采集

(三)城市部件测量

城市部件是城市最微小的细胞单元,是城市基础结构系统的基本组成部分,是城市可利用的各种设施。

城市部件主要包括公用设施、道路交通、市容环境、园林绿化、房屋土地、其他设施等。

我们把它们统称为物化的城市管理对象。

城市部件是城市经济、社会活动的基本载体,是真正属于城市的不可移动的要素。

目前部件采集常用的方法有两种:

一种是调绘法,即外业调绘加内业数字化,另一种是测量法,即数字化测图法。

调绘法是指在外业将部件的空间位置标绘到地形图上,将其属性信息填写到调查表中,两者通过标识码相互对应,在内业进行图形、属性数据录入和属性数据挂接处理。

调绘法要求将所有的部件都反映到调查底图上,当部件较密集时,就很难甚至无法将全部的部件反映到底图上,而当参照物不明显时,就会出现部件定位不准确的情况。

另外,这种方法既要在外业把部件绘到底图上,又要在内业把纸图上的部件转绘到电子地图上,不仅精度低、速度慢、效率低,而且容易出错。

数字化测量法是指将部件的空间位置和属性信息通过地理编码和属性编码存入全站仪中,避免了外业绘图和填表工作,提高了调查的精度和效率。

城市部件测量对目标地物数据要求非常全、非常细,无论采用调绘法还是数字化测量法,都必须投入大量人力物力,才能得到较好的成果。

移动测量系统能够快速采集到沿途各种地物地貌大量的真彩色坐标点云数据,数据信息丰富(如图10所示)。

分道线

井盖

绿地

灯杆

下水道口

建筑物

图10丰富的部件信息

实践证明,移动测量系统用于城市部件测量,速度快、精度高、内容丰富。

这已成为一种全新的城市部件测量手段和方法,为城市部件数据测量、入库开辟了一个新方案。

六结论与展望

本文系统介绍了SSW移动测量系统的构成、工作原理,系统的关键技术及部分应用范例和精度统计。

试验和实际应用结果表明系统测量精度高、速度快、数据丰富,完全能够满足沿路各项基础地理信息数据获取的要求。

车载激光移动测量系统有着广阔的应用前景。

主要应用领域有:

①在公路高精度高程测量中的应用;

②在大比例尺地图快速测量和修测中的应用;

③在城市部件测量中的应用;

④在城市三维建模中的应用;

⑤道路设施调查;

⑥高级驾驶辅助系统(ADAS)路面信息采集等。

车载激光移动测量系统的研究处于起步阶段,许多功能还不是特别完善,仍有许多问题需要解决,有许多功能需要增加和完善。

需要进一步研究的工作主要有:

①云测量工作站测图、分析等功能还不完善,需要进一步开发和完善。

②根据局部坐标数据的自动分类。

③在分类基础上的自动和半自动建模。

参考文献

[1]李德仁,2006.移动测量技术及其应用.地理空间信息,4(4):

1-5.

[2]徐进军,张民伟,2007.地面3维激光扫描仪:

现状与发展.测绘通报,(l):

47-50.

[3]PeterD.White,RichardR.Jones,2008.Acost-efficientsolutiontotruecolorterrestriallaserscanning.Geosphere,4(3):

564-575.

[4]VaiosBalis,SpyrosKaramitsos,IoannisKotsis,ChristosLiapakisandNikosSimpas,2010.3D–LaserScanning:

IntegrationofPointCloudandCCDCameraVideoDatafortheProductionofHighResolutionandPrecisionRGBTexturedModels[EB/OL].[2010-09-20].WSA2_5_Balis_et_al.pdf.

[5]张小红,2007.机载激光雷达测量技术理论与方法.武汉:

武汉大学出版社.

[6]王留召,2006.小型数字航空摄影测量系统[硕士学位论文].昆明理工大学.

[7]王留召,韩友美,钟若飞,2010.激光扫描仪锥扫描角标定.测绘通报,(9):

5-8.

[8]韩友美,王留召,钟若飞,2010.基于激光扫描仪的线阵相机高精度标定.测绘学报,39(6):

631-635.

[9]张剑清,潘励,王树根,2003.摄影测量学.武汉:

[10]杨勇,钟若飞,康永伟,秦涛,2010.车载激光与单目线阵相机的数据融合.首都师范大学学报,31

(2):

82-86.

[11]王留召,韩友美,钟若飞,2010.车载激光扫描仪距离测量参数标定.测绘通报,

(1):

19-20.

[12]张洪涛,段发阶,2007.基于两步法线阵CCD标定技术研究.计量学报,28(4):

311-313.

[13]郭岚,赵亚宁,2008.城市部件的数字化调查方法.城市勘测,

(1):

61-63.

[14]叶菲,张凤梅,2010.城市部件数据库构成、质检内容及方法探讨.城市勘测,6(zl):

52-53.

[15]崔延,2010.浅析城市部件的数字化采集方法.北京测绘,

(1):

59-62.

[16]李平,全斌,2009.“网格化”城市管理系统中城市部件数字化采集方法的探讨.测绘标准化,25(4):

11-14.

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高等教育 > 军事

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2