工程中的数值分析Word下载.docx

上传人:b****6 文档编号:8522902 上传时间:2023-05-11 格式:DOCX 页数:22 大小:107.60KB
下载 相关 举报
工程中的数值分析Word下载.docx_第1页
第1页 / 共22页
工程中的数值分析Word下载.docx_第2页
第2页 / 共22页
工程中的数值分析Word下载.docx_第3页
第3页 / 共22页
工程中的数值分析Word下载.docx_第4页
第4页 / 共22页
工程中的数值分析Word下载.docx_第5页
第5页 / 共22页
工程中的数值分析Word下载.docx_第6页
第6页 / 共22页
工程中的数值分析Word下载.docx_第7页
第7页 / 共22页
工程中的数值分析Word下载.docx_第8页
第8页 / 共22页
工程中的数值分析Word下载.docx_第9页
第9页 / 共22页
工程中的数值分析Word下载.docx_第10页
第10页 / 共22页
工程中的数值分析Word下载.docx_第11页
第11页 / 共22页
工程中的数值分析Word下载.docx_第12页
第12页 / 共22页
工程中的数值分析Word下载.docx_第13页
第13页 / 共22页
工程中的数值分析Word下载.docx_第14页
第14页 / 共22页
工程中的数值分析Word下载.docx_第15页
第15页 / 共22页
工程中的数值分析Word下载.docx_第16页
第16页 / 共22页
工程中的数值分析Word下载.docx_第17页
第17页 / 共22页
工程中的数值分析Word下载.docx_第18页
第18页 / 共22页
工程中的数值分析Word下载.docx_第19页
第19页 / 共22页
工程中的数值分析Word下载.docx_第20页
第20页 / 共22页
亲,该文档总共22页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

工程中的数值分析Word下载.docx

《工程中的数值分析Word下载.docx》由会员分享,可在线阅读,更多相关《工程中的数值分析Word下载.docx(22页珍藏版)》请在冰点文库上搜索。

工程中的数值分析Word下载.docx

(3)迭代

输入初值x,输入迭代格式,并往下复制下去

(4)在输入f的计算公式,往下复制下去,通过观察数值是否收敛,若收敛,则取收敛到后面的数值;

若发散,则更改定义迭代格式,再重新重复以上步骤进行计算。

x3-x+1

区间端点

a=

-1

b=

x

f(x)

-0.9

-0.629

-0.8

-0.312

-0.7

-0.043

-0.6

0.184

-0.5

0.375

-0.4

0.536

-0.3

0.673

-0.2

0.792

-0.1

0.899

迭代式:

xk+1=(xk-1)^1/3

11

-0.4999938

1.8

12

-0.4999979

1.3

13

-0.4999993

14

-0.4999998

15

-0.4999999

1.1

16

-0.5000000

1.4

17

18

1.9

19

1.375

20

21

f(x19)=1.375

不同迭代格式的收敛性:

假定迭代函数

(1)对任意

(2)存在正数L<

1,使对任意

则迭代过程

对于任意初值

(3)若方程有根

1.3Newton迭代法的原理和算法及Excel实现。

原理:

Newton迭代法的基本思想是“以直代曲”,将f(x)=0在每一步近似为线性方程来求解,具体方法如下:

将f(x)在xk作Taylor一阶展开

f(x)=f(xk)+f’(xk)(x-xk)+1/2!

f’’(§

)(x-xk)2,§

介于x和xk之间.

略去上式中的二次项,得到线性方程,解出x,作为新的近似根xk+1:

xk+1=xk-f(xk)/f’(xk),k=0,1,2,3·

称为Newton迭代法

先假定方程的有根区间为[a,b],计算[a,b]区间内各个点(整数点)的函数值,当函数值出现f(a0)<

0,f(b0)>

0时,[a0,b0]即为方程的有根区间。

将有根区间的长度若干等分,求出对应的点的函数值。

将此数据绘图,并根据所绘的图求得初始值。

求得方程f(x)的一次求导公式f´

(x),得到迭代公式xk+1=xk-f(xk)/f´

(xk),将初始值代入迭代公式中计算出下一项的x值,并计算对应的函数值,新的x值代入迭代公式中继续计算出下一项的x值,重复步骤,直到x的值相同不再变化,此x值即为方程的近似解。

迭代法求方程x^3-x-1

确定初值

方程化为等价方程,并定义迭代公式为x-(x^3-x-1)/3x^2-1

上图知迭代初值1.4

1

2

作图数据区

-0.769

1.2

-0.472

-0.103

0.344

1.5

0.875

1.6

1.496

1.7

2.213

3.032

3.959

5

迭代公式为x-(x^3-x-1)/3x^2-1

不动点迭代

k

xk

f(xk)

0.0

9.06038E-05

3

1.79368E-09

4

F(x4)=0,方程解为1.7

2.1线性方程组的数值求解的原理和算法及Excel实现。

Gauss消去法原理:

设有线性方程组,将其增广矩阵(A丨b)通过初等行变化为(A(n)丨b(n)),A(n)为上三角阵,在经过回代解除与原方程组同解的三角形方程组A(n)x=b(n)的解,得到方程组的解。

把方程组化为上三角形方程组,做消元的步骤,再做回带的步骤,解上三角形方程组A(n)x=b(n)。

Excel实现:

x1+x2-4x4=1

-x1+4x2+x3+3x4=-2

x1+3x2+5x3-4x4=-4

2x2+2x3-3x4=-2

A

b

-4

-2

-3

6

-5

0.7

4.3

-4.3

0.3

-3.0

三角分解法原理:

将系数矩阵A分解为两个三角形矩阵的乘积A=LU,进而将原方程组的求解转化为两个三角形方程组的求解。

若有三角阵LU,使A=LU,则方程组Ax=b与方程组LUx=b等价,而后者等价于两个三角形线性方程组:

Ly=b,Ux=y。

将线性方程组的系数矩阵A分解为三角形方程组的乘积LU,称为矩阵A的LU分解;

再将线性方程组的求解转换为三角形方程组的求解。

A稠密-----LU分解法

A对称-----LDL分解法

A正定-----LL分解法

A三对角线------追赶法

新建Excel表格,依次按顺序输入矩阵数据

一句矩阵与逆矩阵相乘为单位矩阵原理,依次从A-D列数据从下至上依照公式计算逆矩阵数据

上三角形矩阵求逆

U

U-1

0.25

-0.75

0.4375

-0.25

3.1Lagrange插值的原理和算法及Excel实现;

将待求的n次多项式插值函数pn(x)改写成另一种表示方式,再利用插值条件⑴确定其中的待定函数,从而求出插值多项式。

n=1时,设

.作直线方程:

,称

为两点式插值或线性插值.

时,设

令:

为三点式插值或抛物插值.

先建立一个Excle数据表:

插值节点

xi

B

C

D

yi

E

F

G

H

插值点与函数计算值

L0

L1

L2

L3

L3(x)

a

在单元格中输入插值点a

求基函数L0=(a-B)*(a-C)*(a-E)/(E-F)/(E-G)/(E-H)

L1=(a-A)*(a-C)*(a-D)/(F-E)/(F-G)/(F-H)

以此类推求至L3,再求出L3(x).

再输入最后一个基函数L3(x)的计算公式:

=SUMPRODUCT公式得到f(x)的近似值

2.5

-0.0625

0.5625

17.5

点数:

100

1.03

0.9458955

0.0877635

-0.0432135

0.0095545

18.295613

1.06

0.893564

0.171108

-0.082908

0.018236

18.572704

1.09

0.8429785

0.2501145

-0.1191645

0.0260715

18.831651

1.12

0.794112

0.324864

-0.152064

0.033088

19.072832

1.15

0.7469375

0.3954375

-0.1816875

0.0393125

19.296625

1.18

0.701428

0.461916

-0.208116

0.044772

19.503408

3.2Newton插值的原理和算法及Excel实现。

牛顿插值通过求各阶差商,递推得到的一个公式:

f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0)...(x-xn-1)+Rn(x)。

改写

两点公式可改为:

三点公式可改为:

这种插值形式的基函数为

,...,系数称为差商(均差).

l0

一阶

二阶

三阶

四阶

五阶

(1)计算差商表

假设n次

输入一阶差商的计算公式“=(B-A)/(2-1)”以此类推往下拉

输入二阶差商的计算公式用一阶的值相隔两数相减除以x对应相隔两数相减的值,以此类推往下拉

三阶,四阶,N阶如此算下去

(2)计算插值点处的函数值

输入插值点;

分别输入Newdon插值函数N1,N2·

N-1的计算公式;

分别得到插值点处的1阶至n-1阶插值函数值.

24

差商表

fi

8

-3.5

-0.975

-5.5

5.7

-3.7

-10

11.5

-7.5

-11

-9

N1

N2

N3

N4

3.7

33.6

17.535

15.393

13.866825

1.05

12.4

12.56625

12.5045

12.07186406

12.8

13.115

13.001

12.215825

13.2

13.64625

13.489

12.

13.6

14.16

13.968

12.6912

1.25

14.65625

14.4375

13.00878906

14.4

15.135

14.897

13.370825

1.35

14.8

15.59625

15.346

13.

4.1数据拟合的最小二乘法的原理和算法;

当实验提供了大量数据时,由于观测数据往往不准确,因此不能要求y=f(x)通过所有点,只要求δi=f(xi)-yi(i=1,2,…,m)严格为零,使近似曲线尽量反映所给数据点的变化趋势同时偏差平方和最小,常采用欧式范数作为误差度量的标准,此即称为最小二乘法原理。

关于最小二乘法的一般提法是:

对给定的一组数据(xi,yi)(i=0,1,...,m),要求在函数类Ф=Span{φ0(x),φ1(x),φ2(x),……φn(x)}中求函数

)1

使误差平方和

2

为了使问题的提法更有一般性,,通常在最小二乘法中考虑加权平方和

(4.3)

处的数据比重不同,称为权系数,例如

可表示在点

处重复观测的次数。

按条件式(4.3)求函数

的方法称为数据拟合的最小二乘法,用几何语言,即称为曲线拟合的最小二乘法。

为最小二乘解,S(x)为拟合。

函数。

4.2直线拟合最小二乘法的Excel实现

建立Excle数据表,输入实验数据

输入拟合多项式的次数

列出法方程组在B6:

F9中并输入计算公式计算出结果.之后分解方程组再回代入方程中,并且计算平方误差,作图

X

2.8

5.4

Y

2.1

28.1

41.9

W

次数

法方程组

13.7

83.6

56.93

381.81

解法方程组

6.85

41.8

-11.

3.2

30.

9.7

P(X)

3.1

17.

点数

1.242

1.284

0.1

1.326

0.4

4.3曲线拟合最小二乘法的Excel实现。

建立Excle数据表,输入实验数据,依照数据变化趋势设想y=f(x)的方程,再用线性函数S(u)来拟合数据.

将数据取倒数变换到下方,再有法方程组输入公式计算,进行矩阵分解以及回代结果.计算平方误差最后确定初值输出作图数据.

实验数据

t

7

9

10

y

6.5

8.01

8.79

9.3

9.5

9.86

10.2

10.32

10.42

10.51

10.58

10.62

10.7

ω

变化数据

µ

0.5

0.2

0.125

0.0625

w

0.8

0.09596929

3.3

0.6

平方误差

0.000328967

4.7

4.6

4.

1.45

5.6

1.75

5.3

6.0

2.05

6.

2.2

6.2

2.35

6.9

5.1数值积分的原理和算法;

将函数图形与x轴形成的图形等分求面积即求其积分.

从不同角度出发,通过各种途径来构造数值求积公式,常用的一个方法是,利用插值多项式来构造数值求积公式,具体做法如下:

在积分区间[a,b]上取一组点:

a<

=x0<

x1<

…<

xn<

=b,做f(x)的n次插值多项式:

其中lk(x)(k=0,1,…,n)为n次Lagrange插值基函数,用Ln(x)近似代替被基函数f(x),则有:

若记

得数值求积公式:

xk称为求积节点,Ak称为求积系数

例如把图形分成n份,n=1时用梯形公式,n=2时用Sinmpson公式,n=4时用Cotes公式计算代入将每一小块求和

5.2数值积分的的Excel实现;

建立一个Excle数据表,在节点区输入节点值于B列,

之后计算积分精确值最后运用梯形公式,Sinmpson公式与Cotes公式计算核对

节点

-1.5

函数值

积分值

f(-2)

f(-1.5)

f(-1)

f(-0.5)

f(0)

精确值

梯形值

Simpson值

Cotes值

x^2

2.25

2.7

x^3

-8

-3.375

-0.125

x^4

5.0625

6.4

6.7

e^x

0.

比较.

6.常微分方程的数值解法的原理和算法;

采取“进步式”和“离散化”。

“进步式”是指求解过程依节点排列的次序一步一步地向前推进。

描述这类算法,只需给出用已知信息yn,yn-1,yn-2,……计算yn+1的递推公式.

“离散化”是指通过一定的方法将连续的问题转化为关于离散变量的相应问题。

“离散化”的常见方法有:

直接用磋商代替微商发、Taylor级数展开法、数值积分法等。

一阶方程的初值问题y=f(x,y),x属于[a,b],y(a)=y0只要函数f(x,y)在{a≤x≤b,|y|<+∞}上连续,且关于y满足Lipschitz条件:

|f(x,y1)-f(x,y2)|≤L|y1-y2|,

则方程存在唯一解y=y(x)。

所谓微分方程数值解法,就是需求解函数y(x)在一系列离散节点上的近似值:

yi≤60;

y(xi),a<x1<

x2<……Xn=b.

通常采用等距节点Xi=a+ih,i=0,1,2……,n,其中h=(b-a)/n称为步长。

常微分方程的数值解法的的Excel实现

建立Excel数据表,在基本数据区域输入常微分方程的初步数据和步长值,计算节点A列输入序数值B列求出节点dy/dx=f(x,y),y(x0)=y0],先计算节点之后用Euler法写出求解公式计算值并用改进Euler求解公式计算值各自复制后面,最后作图

基本数据

x0

y0

h

数值解

Euler法

改进Euler法

精确解

i

y(xi)

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 工作范文 > 行政公文

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2