外文翻译使用双光纤布拉格光栅传感器和互相关技术的水流量计Word文档下载推荐.docx

上传人:b****1 文档编号:865529 上传时间:2023-04-29 格式:DOCX 页数:24 大小:516.95KB
下载 相关 举报
外文翻译使用双光纤布拉格光栅传感器和互相关技术的水流量计Word文档下载推荐.docx_第1页
第1页 / 共24页
外文翻译使用双光纤布拉格光栅传感器和互相关技术的水流量计Word文档下载推荐.docx_第2页
第2页 / 共24页
外文翻译使用双光纤布拉格光栅传感器和互相关技术的水流量计Word文档下载推荐.docx_第3页
第3页 / 共24页
外文翻译使用双光纤布拉格光栅传感器和互相关技术的水流量计Word文档下载推荐.docx_第4页
第4页 / 共24页
外文翻译使用双光纤布拉格光栅传感器和互相关技术的水流量计Word文档下载推荐.docx_第5页
第5页 / 共24页
外文翻译使用双光纤布拉格光栅传感器和互相关技术的水流量计Word文档下载推荐.docx_第6页
第6页 / 共24页
外文翻译使用双光纤布拉格光栅传感器和互相关技术的水流量计Word文档下载推荐.docx_第7页
第7页 / 共24页
外文翻译使用双光纤布拉格光栅传感器和互相关技术的水流量计Word文档下载推荐.docx_第8页
第8页 / 共24页
外文翻译使用双光纤布拉格光栅传感器和互相关技术的水流量计Word文档下载推荐.docx_第9页
第9页 / 共24页
外文翻译使用双光纤布拉格光栅传感器和互相关技术的水流量计Word文档下载推荐.docx_第10页
第10页 / 共24页
外文翻译使用双光纤布拉格光栅传感器和互相关技术的水流量计Word文档下载推荐.docx_第11页
第11页 / 共24页
外文翻译使用双光纤布拉格光栅传感器和互相关技术的水流量计Word文档下载推荐.docx_第12页
第12页 / 共24页
外文翻译使用双光纤布拉格光栅传感器和互相关技术的水流量计Word文档下载推荐.docx_第13页
第13页 / 共24页
外文翻译使用双光纤布拉格光栅传感器和互相关技术的水流量计Word文档下载推荐.docx_第14页
第14页 / 共24页
外文翻译使用双光纤布拉格光栅传感器和互相关技术的水流量计Word文档下载推荐.docx_第15页
第15页 / 共24页
外文翻译使用双光纤布拉格光栅传感器和互相关技术的水流量计Word文档下载推荐.docx_第16页
第16页 / 共24页
外文翻译使用双光纤布拉格光栅传感器和互相关技术的水流量计Word文档下载推荐.docx_第17页
第17页 / 共24页
外文翻译使用双光纤布拉格光栅传感器和互相关技术的水流量计Word文档下载推荐.docx_第18页
第18页 / 共24页
外文翻译使用双光纤布拉格光栅传感器和互相关技术的水流量计Word文档下载推荐.docx_第19页
第19页 / 共24页
外文翻译使用双光纤布拉格光栅传感器和互相关技术的水流量计Word文档下载推荐.docx_第20页
第20页 / 共24页
亲,该文档总共24页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

外文翻译使用双光纤布拉格光栅传感器和互相关技术的水流量计Word文档下载推荐.docx

《外文翻译使用双光纤布拉格光栅传感器和互相关技术的水流量计Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《外文翻译使用双光纤布拉格光栅传感器和互相关技术的水流量计Word文档下载推荐.docx(24页珍藏版)》请在冰点文库上搜索。

外文翻译使用双光纤布拉格光栅传感器和互相关技术的水流量计Word文档下载推荐.docx

oftheFBGsensorwiththeinterferometricdetectionwas4×

10−4pm/(Hz)1/2correspondingto0.33nε/(Hz)1/2.Awaterflowexperiment

showedthattheflowmeterhadalinearcharacteristicatvelocityrangefrom0to1.0m/sandtheminimumdetectablevelocityof0.05m/s.

1.Introduction

FiberBragggrating(FBG)sensorshavevariousadvantagessuchassmallsize,simplicityinsensingprinciple,electromagneticinterference(EMI)immunityandcapabilityofmultiplexing.Becauseoftheseadvantages,anumberofbasicresearchesandapplicationsonFBGsensorshavebeenmade[1–3].Intelecommunicationsystems,FBGsareusedasadd-dropmultiplexersbecauseoftheirnarrowbandwidth(typically0.1nm).TheFBGapplicationtoopticaltunablefiltersisalsousefulfordiscriminationofthesignalsinFBGsensorsystems[4].Theapplicationstosmartstructuresandhealthmonitoringareattractiveandhavebeeninvestigatedactively[5,6].FBGsareembeddedincompositematerials

andusedasstrainandtemperaturesensorsintheapplication.Inthefieldofcivilengineering,strainmeasurementsforbridgesandbuildingsaremadeusingFBGsensorarrayswithwavelengthdivisionmultiplexing(WDM)andtimedivisionmultiplexing(TDM)[7].

IntheFBGsensorapplications,thechoiceofthewavelength-shiftdetectionmethodisveryimportantbecausethenoiselevelandthemeasurementbandwidthofthesystemaremainlydeterminedbythedetectionmethod.ThemostcommonlyuseddetectionmethodisthetunablefilterdetectionusingFabry–Perotfilter.Thismethodisthestandardtechniqueandprovidesstaticorquasi-staticmeasurementwithastrainresolutionof1_ε.Anotherpromisingmethodistheinterferometricdetection[8,9].Thismethodhasthecapabilityofdynamicmeasurementwithhighstrainresolutionintheorderofnε/(Hz)1/2.TherearesomereportsaboutthenoiseestimationoftheFBGsensorwithinterferometricdetection[10–12].

OursubjectofresearchistheFBGapplicationtoawaterflowmeter.Therearevariouskindsofflowmetersincludingturbineflowmeters,vortexflowmetersanddifferentialpressuretypeflowmeters.Measurandsofflowmetersarerangingovervariousflowincludingwaterflow,gasflowandmultiphaseflow.Cross-correlationflowmeter,whichutilizesatimedelayofsignalsbycoherentstructuresincludingvorticesandnaturallyexistingunsteadypressurefield,isusuallyusedforpipeflowmeasurement.Theadvantageofthecross-correlationflowmeterisitssimplicityinsensingprinciple.Theonlyparameterrequiredtotheflowmeteristhedistancebetweentwosensors.Inthecross-correlationflowmeter,twopairofaultrasonictransmitterandareceiverareusuallyusedbecauseoftheirnon-intrusivenesstotheflow[13].Theflowmeterusingtheultrasonictransducershasagoodlinearityatwidevelocityrange.Theproblemwiththeflowmeteriscomplexityofthesensingpartbecausethesystemneedsatleastfourtransducers.Thecross-correlationflowmeterreportedbyDyakowskiandWilliams[14]uses16lightrays(eightpairs)todetectflowsignalsingas–solidmixture.Thevelocitiesareobtainedfromcross-correlationoftheintensitymodulatedlightsignals,andtheaveragevelocityandthevelocitydistributioninthepipearethenobtainedbycombiningcalculatedvelocities.ThisflowmeterisattractivebecauseofEMIimmunityandthepassivenature.However,thesystemneedsparticles,whichreflectorscatterthelightrays,inthefluidandtheapplicationislimited.Therearefewreportsconcerningthecross-correlationflowmeterusingopticalsensors,notlightrayorlaserbeam,suitedforwaterflowmeasurement.

Inthispaper,wepresentawaterflowmeterusingdualFBGsensorsandcross-correlationtechnique.Theflowmeterhasnoelectronicsandnomechanicalpartsinitssensingpart,andthusthestructureissimple.Atfirst,weexplaintheprincipleandtheschematicdiagramoftheflowmeter.Next,wepresentthenoiseestimationoftheFBGsensorwiththeinterferometricdetectionusingaMach–Zehnderinterferometercomprisedofa2×

2anda3×

3couplers[9].Finally,wedescribeexperimentalperformancesoftheFBGsensorandtheflowmeter.

2.Across-correlationflowmeterusingFBGsensors

Fig.1showstheprincipleoftheflowmeter.Thecross-correlationflowmeterpresentedhereusesFBGstrainsensorscomprisedofFBGsandmetalcantilevers.Intheflowmeasurementsection,theFBGsensorsandabluffbodyareused.Thebluffbodywhoseshapeisarectangularcolumngeneratesstablevortices.ThetimedelaybetweenthevortexsignalsdetectedbytheFBGsensorsareestimatedusingthesmoothedcoherencetransformRSCOT(τ)[15].ThefunctionRSCOT(τ)isexpressedasfollows:

(1)

whereGxx(f)andGyy(f)arethepowerspectraoftheupstreamanddownstreamsensorsignals,Gxy(f)isthecross-spectrumoftwosignalsandF−1denotestheinverseFouriertransform.ThefunctionRSCOT(τ)isacross-correlationfunctionweightedwiththecoherenceofthesignalsandcandetectthetimedelaymorepreciselyandrobustlythanthesimplecross-correlationfunction.ThemaximumofRSCOT(τ)isthebestestimate_tofthetimedelaybetweentwoFBGsensors.Themeasuredvelocityvmeasisthencalculatedfromthefollowingsimpleequation:

(2)

wheredsisthedistancebetweentwosensors.

 

Fig.2illustratestheschematicdiagramofthewholesystem.Weusedanamplifiedspontaneousemission(ASE)asanopticalsourceofthesystem.TheASEhasoutputpowerof22dBmandfullwidthathalfmaximum(FWHM)of50nmatC-band.ThelightfromtheASEisseparatedbyanoptical3dBcouplerandthenilluminatestwoFBGsensorsinstalledtothePVCpipewhoseinnerdiameteris20mm.ThelightreflectedbytheFBGsensorsisfedtoMach–Zehnderinterferometers,whicharecomprisedofa2×

2anda3×

3couplers,withtheopticalpathdifferencesof1.635and3.169mm.Inthe3×

3coupler,threefibersarearrangedinatriangulararray.Theseinterferometersareusedaswavelength-shiftdetectorsforinterferometricdetection.Theincidentlightisphase-modulatedbytheMach–Zehnderinterferometerandthenconvertedtovoltagesignalsbyphotodetectors.SixoutputsignalsaresimultaneouslydigitizedbyanA/Dconverterwitharesolutionof16bitandsamplingfrequencyof10kHz,andthedetectedsignalsarethenprocessedtoobtainthetimedelay.

TheFBGreflectsthelightwavewithacertainwavelengthλBcalledBraggwavelengthandthewavelengthisthenexpressedasfollows:

,(3)

wherenistheeffectiverefractiveindexoftheFBGandΛisthemodulationpitchoftherefractiveindexoftheFBG.TheBraggwavelengthλBchangesbylongitudinalstrainεzappliedtotheFBG,andtheBraggwavelength-shiftδλBisexpressedasfollows[3]:

(4)

wherep12istheelasto-opticconstantoftheopticalfiberandisapproximately0.22.Thisyieldsthestrainsensitivityof1.2pm/_ε.

ToobtaintheshiftδλB,theoutputsoftheinterferometerareused,andtheoutputsVm(m=1,2,3)areexpressedasfollows[9]:

Vm=αmVin+Re[Γ(τ)]=αmVin[1+γcos(θMZI+θm)],(5)

whereΓ(τ)istheauto-correlationfunctionoflightwavereflectedbytheFBGsensor,VinisthevoltagecorrespondingtoopticalpowerreflectedbytheFBGsensor,andαmisthecoefficientcompensatingdifferencesofphotodetectorsensitivitiesandobtainedfrompreliminaryexperiments.Ifthesplitratiosofthe2×

2and3×

3couplersare1:

1and1:

1:

1,respectively,onecanobtainθ1=0,θ2=2π/3andθ3=−2π/3,andtheoutputsV1,V2andV3arederivedasfollows:

(6)

ThesignalθMZIcanbethencalculatedusingthefollowingequation:

(7)

whereListheopticalpathdifferenceoftheinterferometer.TherelationshipbetweenthesignalvariationδθMZIandtheshiftδλBisexpressedasfollows:

(8)

wheretheterm(λB+δλB)wasassumedtobenearlyequaltoλBbecausetheshiftδλBissignificantlysmallerthanλB.Anaccidentallossofopticalpowerwhilemeasurement,whichcausesproblemsinopticalintensitymodulationtypesensors,isadmissibleinsomemeasurebecausethewavelength-to-phasesensitivity(=−2πL/λ2B)dependsononlythepathdifferenceL.

3.NoiseestimationoftheFBGsensorwithinterferometricdetection

TherearesomereportsaboutthenoiseestimationofFBGsensorswithinterferometricdetection.Howeverthenoiseestimationreportsabouttheinterferometricdetectionusinga2×

3couplershavenotbeenpresented.

3.1.Noiseofthephotodetector

Fig.3showsthecircuitdiagramofthephotodetector.Thenoiseofthephotodetectorisdefinedbythenoiseofaphotodiodeandatransimpedanceamplifier.ThenoiseofthephotodetectorisdeterminedbythermalnoisesduetothefeedbackresistanceRfofthetransimpedanceamplifierRfandshuntresistanceRshofthephotodiodeandbyshotnoiseduetotheoutputcurrentim(=Vm/Rf)ofthephotodiode.Theequivalentinputnoisevoltageandcurrentof

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 教学研究 > 教学反思汇报

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2