班主任的翻译.docx

上传人:b****8 文档编号:8954915 上传时间:2023-05-16 格式:DOCX 页数:17 大小:582.21KB
下载 相关 举报
班主任的翻译.docx_第1页
第1页 / 共17页
班主任的翻译.docx_第2页
第2页 / 共17页
班主任的翻译.docx_第3页
第3页 / 共17页
班主任的翻译.docx_第4页
第4页 / 共17页
班主任的翻译.docx_第5页
第5页 / 共17页
班主任的翻译.docx_第6页
第6页 / 共17页
班主任的翻译.docx_第7页
第7页 / 共17页
班主任的翻译.docx_第8页
第8页 / 共17页
班主任的翻译.docx_第9页
第9页 / 共17页
班主任的翻译.docx_第10页
第10页 / 共17页
班主任的翻译.docx_第11页
第11页 / 共17页
班主任的翻译.docx_第12页
第12页 / 共17页
班主任的翻译.docx_第13页
第13页 / 共17页
班主任的翻译.docx_第14页
第14页 / 共17页
班主任的翻译.docx_第15页
第15页 / 共17页
班主任的翻译.docx_第16页
第16页 / 共17页
班主任的翻译.docx_第17页
第17页 / 共17页
亲,该文档总共17页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

班主任的翻译.docx

《班主任的翻译.docx》由会员分享,可在线阅读,更多相关《班主任的翻译.docx(17页珍藏版)》请在冰点文库上搜索。

班主任的翻译.docx

班主任的翻译

Theoutersurfaceofthehyphalorsporewallsinthesecasesisusuallyfoundtobecomposedofalayerof10-nm-widerodletscomposedofproteinswhichmodifythebiophysicalpropertiesofthewallsurface;themostcommonlyencounteredfamilyofsuchproteinsarecalled hydrophobins (Wessels,1996;Wösten&deVocht,2000;Sunde etal.,2008;Cox&Hooley,2009).Hydrophobinsbelongtoalarge,diversegroupofrelatedproteinsfoundwidelyinthefungi;whenexpressedtothemaximumtheymayconstituteupto10%oftotalwallprotein.Eachmoleculeconsistsofahydrophobicdomainandahydrophilicdomain;thatis,theyare amphipathic (atermyoumayhavemetinrelationtothephospholipidsthatmakeupbiologicalmembranes,whichalsohaveahydrophilicgroupatoneendandahydrophobicgroupattheother).Theiramino-terminalpartdeterminesthehydrophilicsideoftheassemblage.Theamphipathicstructureofhydrophobinsprovidesthemoleculeswithanextraordinarypotentialarrayoffunctions:

∙enablehyphaetobreakthroughthewater/airinterfaceoffluidhabitats;

∙providethehydrophobicityrequiredbyhyphaeandsporesincontactwithair;

∙participateinmorphogeneticsignalling,initiatingconidiationandfruitbodyformation;

∙haveimportantrolesintissueformation,particularlyincontrollingfluidandairspaces;

∙promoteadhesionbetweenthecellwallofthefungusandthehydrophobicsurfacesofplantsandinsects,andsopotentiateinfectionandaidpenetrationofthehostsurface;

∙failtoactivatetheimmunesystem;e.g.aerialconidiaof Aspergillus, Penicillium and Cladosporium thathavesurfacelayersofhydrophobin.Thehydrophobinrodletsaresaidto‘immunologicallysilenceairbornemoulds’,whichmeansthatalthoughfungalsporesareubiquitousintheairwebreathetheyneithercontinuouslyactivatehostimmunitynorinduceinflammatoryresponsesafterinhalation(Aimanianda etal.,2009);

∙mediatesymbioticinteractionswithplantroots(mycorrhizas)andalgae(lichens).

Themoleculesthatdoallthisarerelativelysmallproteins,usuallyaround100aminoacids,thathaveextensivehomologiesandcharacteristicallycontainsignalsequencesforsecretion,andeightcysteineresiduesconservedinthesameposition.Theseeightconservedcysteineresiduesformfourdisulphidebridgesandtheypreventself-assemblyofthehydrophobinintheabsenceofahydrophilic/hydrophobicinterface.HydrophobinsareuniquetomycelialfungibutareexpressedbybothAscomycotaandBasidiomycota.Eachfungushasgenesformorethanone,oftenmorethantendifferenthydrophobins,andthegenesareusuallyexpressedatdifferenttimes.In Schizophyllumcommune thehydrophobinfoundinthevegetativehyphalwalldiffersfromthatexpressedinthehyphalwallsofthefruitbody(Wessels,1996).

Hydrophobinsareexcretedfromthehyphaltip;ifthehyphaisinanaqueousenvironment,thehydrophobinspassintosolution.Buttheproteinmoleculesareabletoself-assembleintocoveringfilmsatthewater/air(i.e.hydrophilic/hydrophobic)interfaceandwhenahyphaemergesfromthesolution,thepolypeptidepolymerisesonthesurfaceofthehyphalwall,forminganarrayofparallelrodlets.Eachhydrophobinmoleculeisboundtothefungalwallbyitshydrophilicend,thehydrophobicdomainbeingexposedtotheoutsideworld(Linder etal.,2005;Cox&Hooley,2009).Adifferenceinsolubilityoftheseassemblagesdivideshydrophobinsintotwogroups:

classIhydrophobinsformhighlyinsolublemembranesdissolvedonlybytrifluoroaceticacidandformicacid,whileassembliesofclassIIhydrophobinsdissolvereadilyinethanolorsodiumdodecylsulfate(SDS).

Thehydrophobinassemblyonthehyphareduceswatermovementthroughthewall,givingprotectionfromdesiccation,buttheexposedhydrophobicsurfaceenablesbondingtootherhydrophobicsurfaces.Thishappensbecausehydrophobesarenotelectricallypolarisedandthelowestenergystatefortwohydrophobesisforthemtobondtogethertoexcludeelectricallypolarisedwatermolecules.Afungalwallcoatedwithhydrophobinswillbeabletousethishydrophobicinteractiontobondtootheraerialhyphae,leadingtotheformationofmulticellularhyphalstructures.Ahydrophobin-coatedsporecouldalsoattachimmediatelyandfirmlytothehydrophobic(forexample,waxy)surfaceofitsplantorinsecthost,givingtimeforformationofappressoriaorotherpenetrationstructures.

Withinfungaltissues,andthatincludesthetissuesoflichenthalli,hydrophobinsprovidecontroloverthemovementofwaterandgaseswithinthetissuebecausetheexposedhydrophobicdomainspreventwaterlogginginairspaces,andallowthefungustocontrolwhichchannelsthroughthetissueareusedformovementofwaterandaqueousnutrients,andwhicharekeptfreeoffluidandusedformovementofgases(Wösten&deVocht,2000;Sunde etal.,2008).Theremarkableabilityofhydrophobinstochangethenatureofasurface(theyturnhydrophobicsurfaceshydrophilicandhydrophilicsurfaceshydrophobic)makehydrophobinsinterestingcandidatesforuseincommercialandmedicalapplications(Cox&Hooley,2009;Cox etal.,2009).

Anotherfungalwallproteinthatdeservesspecificmentionistheglycoproteinknownas glomalin, whichisproduced abundantly inthewallsofhyphaeandsporesofarbuscularmycorrhizalfungiinsoilandinroots.Whatmakesthisproteindeservingofmentionistheamountofitthatisproduced.Itpermeatessoilorganicmatter,andcanaccountsforaround 30%ofthecarboninsoil.Inthesoil,glomalinformsclumpsofsoilgranulescalledaggregatesthataddstructuretosoil.ItissuchamajorcomponentofsoilorganicmatterthattheAgriculturalResearchServiceoftheUnitedStatesDepartmentofAgriculture,whichisnotnormallysensationalist,publishedanarticleinthe September2002issueofits AgriculturalResearch magazineentitled'Glomalin:

hidingplaceforathirdoftheworld’sstoredsoilcarbon',whichexplainsthat:

‘Glomalingivessoilitstilth-thatsubtletexturethatenablesexperiencedfarmersandgardenerstojudgegreatsoilbyfeelingthesmoothgranulesastheyflowthroughtheirfingers’(CLICKHERE toviewthepage[requiresInternetconnection]).

GlomalinisproducedonlybymembersoftheGlomeromycota,fungithatformarbuscularmycorrhizas.Whenfirstdiscovereditwasclearlypresentinsuchquantitythatitmustmakeamassivecontributiontotheaggregationofsoilparticles.Soitwasfirstthoughtthatitmustbesecretedorotherwisereleasedintothesoilbyarbuscularmycorrhizalfungispecificallytocontrolsoilstructure,amechanismthathasbeencalledhabitatengineering.Theviewbeingthatincreasedsoilaggregation(i.e.improvedtilth)wouldbenefitthehostplant,andtherebytheassociatedmycorrhizalfungus,andsojustifytheenergetic‘cost’ofproducingtheglomalin.Thereissomeexperimentalsupportforthisideathoughthereisalsoevidencethatglomalinisnotsecreted,butiscovalentlyboundintothehyphalwallmatrixwhereitprotectsthehypha.Itmaybethatthecharacteristicsthatenableglomalintoprotectthehyphalwallalsoallowtheproteintopromotesoilaggregation(Driver etal.,2005;Purin&Rillig,2007).

Updated February25,2011

6.9Thefungalwallasaclinicaltarget

Wewilldealwiththerapeuticantifungalagentsandtheirtargetsindetailin Chapter18,butwecan’tendadiscussionofhyphalcellwallswithoutmentioningtheobviouspointthatsynthesisandassemblyofthefungalcellwallisanattractivetargetforantifungalchemotherapy.Antifungalsthattargetchitinsynthesisareoflimiteduseatthemomenteventhoughtheimportanceofchitininthestructureofthefungalwallwouldseemtomakeitanexcellenttarget.Currently,thechitinsynthesisinhibitorsavailablearethenaturallyoccurring nikkomycins and polyoxins,andtheirsyntheticderivatives.Theseareanaloguesofthechitinsynthasesubstrate,UDP-N-acetylglucosamine,andactascompetitiveinhibitorsofchitinsynthase.Theycanbeeffectivewhenusedinconjunctionwithotherantifungalagents,buttendtobeineffectivealonebecauseoflimiteduptakeoftheinhibitors(Bowman&Free,2006).

Theonlyaspectofwallsynthesisthatiseffectivelytargetedbycommerciallyavailableantifungalagentscurrentlyistheβ1,3-glucansynthase,whichisinhibitedbythe echinocandins.Thesenon-competitiveinhibitorsoftheglucansynthaseareknowntobindtotheglucansynthasecatalyticsubunit.Echinocandinscausefungalcellstoswellandthewallslyseatplacesofactivecellwallsynthesis.

Mostpharmaceuticalscurrentlyinusefortreatmentofmycosestargetaspectsoffungalbiologyotherthanthecellwalls.Themostcommonlyusedantifungalsareazolesandpolyeneantibioticswhichtargetergosterolinthefungalplasmamembrane.However,thestructureofthecellwallisuniquetothefungiandtherearemanystepscontrolledbyenzymesthatlackhomologuesinthehumangenomeandarethereforegoodcandidatesastherapeutics:

asidefromchitinandglucansynthasesandenzymesinvolvedincross-linkingwallcomponents,therearethemannosyltransferasesandglycosyltransferasesintheGolgiapparatus,andthestepsinvolvedinattachingGPIanchorstocellwallproteins(Bowman&Free,2006).Thesearethetargetsforfutureresearch.

Updated February25,2011

Chapter6.10Referencesandfurtherreading

Adams,D.J.(2004).Fungalcellwallchitinasesandglucanases. Microbiology, 150:

2029-2035.DOI:

 http:

//dx.doi.org/10.1099/mic.0.26980-0.

Aimanianda,V.,Bayry,J.,Bozza,S.,Kniemeyer,O.,Perruccio,K.,Elluru,S.R.,Clavaud,C.,Paris,S.,Brakhage,A.A.,Kaveri,S.V.,Romani,L.&Latgé,J.-P.(2009).Surfacehydro

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 经管营销 > 经济市场

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2