车辆工程毕业设计128汽车齿轮齿条式转向器设计.docx

上传人:b****8 文档编号:8960097 上传时间:2023-05-16 格式:DOCX 页数:41 大小:478.56KB
下载 相关 举报
车辆工程毕业设计128汽车齿轮齿条式转向器设计.docx_第1页
第1页 / 共41页
车辆工程毕业设计128汽车齿轮齿条式转向器设计.docx_第2页
第2页 / 共41页
车辆工程毕业设计128汽车齿轮齿条式转向器设计.docx_第3页
第3页 / 共41页
车辆工程毕业设计128汽车齿轮齿条式转向器设计.docx_第4页
第4页 / 共41页
车辆工程毕业设计128汽车齿轮齿条式转向器设计.docx_第5页
第5页 / 共41页
车辆工程毕业设计128汽车齿轮齿条式转向器设计.docx_第6页
第6页 / 共41页
车辆工程毕业设计128汽车齿轮齿条式转向器设计.docx_第7页
第7页 / 共41页
车辆工程毕业设计128汽车齿轮齿条式转向器设计.docx_第8页
第8页 / 共41页
车辆工程毕业设计128汽车齿轮齿条式转向器设计.docx_第9页
第9页 / 共41页
车辆工程毕业设计128汽车齿轮齿条式转向器设计.docx_第10页
第10页 / 共41页
车辆工程毕业设计128汽车齿轮齿条式转向器设计.docx_第11页
第11页 / 共41页
车辆工程毕业设计128汽车齿轮齿条式转向器设计.docx_第12页
第12页 / 共41页
车辆工程毕业设计128汽车齿轮齿条式转向器设计.docx_第13页
第13页 / 共41页
车辆工程毕业设计128汽车齿轮齿条式转向器设计.docx_第14页
第14页 / 共41页
车辆工程毕业设计128汽车齿轮齿条式转向器设计.docx_第15页
第15页 / 共41页
车辆工程毕业设计128汽车齿轮齿条式转向器设计.docx_第16页
第16页 / 共41页
车辆工程毕业设计128汽车齿轮齿条式转向器设计.docx_第17页
第17页 / 共41页
车辆工程毕业设计128汽车齿轮齿条式转向器设计.docx_第18页
第18页 / 共41页
车辆工程毕业设计128汽车齿轮齿条式转向器设计.docx_第19页
第19页 / 共41页
车辆工程毕业设计128汽车齿轮齿条式转向器设计.docx_第20页
第20页 / 共41页
亲,该文档总共41页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

车辆工程毕业设计128汽车齿轮齿条式转向器设计.docx

《车辆工程毕业设计128汽车齿轮齿条式转向器设计.docx》由会员分享,可在线阅读,更多相关《车辆工程毕业设计128汽车齿轮齿条式转向器设计.docx(41页珍藏版)》请在冰点文库上搜索。

车辆工程毕业设计128汽车齿轮齿条式转向器设计.docx

车辆工程毕业设计128汽车齿轮齿条式转向器设计

本科学生毕业设计

汽车齿轮齿条式转向器设计

 

院系名称:

汽车与交通工程学院

专业班级:

车辆工程

学生姓名:

指导教师:

职称:

实验师

 

 

TheGraduationDesignforBachelor'sDegree

DesignofCarRackandPinionSteeringGear

 

Candidate:

DongLei

Specialty:

VehicleEngineering

Class:

BW07-7

Supervisor:

ExperimenalistWangYuexin

 

HeilongjiangInstituteofTechnology

摘要

汽车转向器是汽车的重要组成部分,也是决定汽车主动安全性的关键总成,它的质量严重影响汽车的操纵稳定性。

随着汽车工业的发展,汽车转向器也在不断的得到改进,虽然电子转向器已开始应用,但机械式转向器仍然广泛地被世界各国汽车及汽车零部件生产厂商所采用。

而在机械式转向器中,齿轮齿条式转向器由于其自身的特点被广泛应用于各级各类汽车上。

本次设计主要对一汽佳宝的转向器进行设计。

首先对转向器进行了结构上的设计,此转向器选用的是侧面输入,两端输出的齿轮齿条式转向器。

其优点为:

结构简单、紧凑;壳体由铝合金或镁合金压铸而成,故质量比较小;传动效率高达90%;齿轮齿条之间因磨损出现间隙后,可利用装在齿条背部、靠近小齿轮的压紧力可以调节的弹簧自动消除齿间间隙,在提高系统刚度的同时也可防止工作时产生冲击和噪声;转向器占用体积小;没有转向摇臂和直拉杆,可以增大转向轮转角;制造成本低。

 

关键词:

转向器;弹簧;横拉杆;设计;校核

 

ABSTRACT

Autosteeringgearistheimportantpartofautomobile.Alsothekeyassemblyofvehicleactivesafety.Its’qualityseriouslyeffectingmanipulatingstability,withthedevelopmentofautomobile’industry,steeringgearisimprovedgradually.Althoughelectronicsteeringgearbeganapplication,butmechanicalsteeringgeariswidelyusedbyautomobileandpartsmanufacturerallovertheworld.Inthemechanicalsteeringgear.TherackandpinionsteeringgearwerewidelyusedinallkindsofAutofactoriesduetoitsowncharacteristics.

ThisdesignismainlyfocusonFAWJiabao.First,designthesteeringgear’sstructure.Thissteeringgearappliedbesideinput.Twoterminaloutputrackandpinionsteering.Its’advantagesissimpleconfigurationandcompact.Shellispressurizedcargingbyaluminiumalloyormagnesiumally.Sotheweightisrelativelylow.Transmittingefficientcanreach90%.Ifgapappearsbetweenrackandpinion.Itcanbeeliminatedbythespringwhichislocatedbackofrackadjustabletopinion,andspringpressurecanbeajusted.Simprovingthesysten’sstiffness.Italsocanpreventtheimpactandnoisewhenitworks.Steeringgearoccupy.Littlevolumehavenosteeringarmandtierod.Steeringwheelanglecanbeincreased;manufacturingcostislow.

 

Keywords:

steering;spring;horizontalbars;design;check

.

 

第1章绪论

改革开放以来,我国汽车工业发展迅猛。

作为汽车关键部件之一的转向系统也得到了相应的发展,基本已形成了专业化、系列化生产的局面。

有资料显示,国外有很多国家的转向器厂,都已发展成大规模生产的专业厂,年产超过百万台,垄断了转向器的生产,并且销售点遍布了全世界。

1.1选题的目的

在现代汽车上,转向系统是必不可少的最基本的系统之一,也是决定汽车主动安全性的关键总成,汽车的转向特性,保持汽车具备较好的操纵性能,始终是汽车检测技术当中的一个重要课题。

特别是在车辆高速化、驾驶人员非职业化、车流密集化的今天,汽车转向系的设计工作显得尤为重要。

1.2转向器国内外研究现状

从世界第一辆汽车问世至今,汽车工业已经经历了百年历程。

现代的汽车与发展初期相比,广泛地应用了各种高新技术,并且还在发生更深刻的变革。

转向系统作为汽车底盘中的独立分系统,在汽车技术发展的过程中也经历了深刻的变革。

转向技术的发展基本上经历了机械转向、液压(气压)动力转向、电子控制液压动力转向、电动转向、电子线控转向和主动转向几个阶段。

 

  汽车转向系是保持或者改变汽车行驶方向的机构,在汽车转向行驶中,保证各转向轮之间有协调的转角关系。

保证汽车在行驶中能按驾驶员的操纵要求,适时地改变行驶方向,并能在受到路面干扰偏离行驶方向时,与行驶系配合,共同保持汽车稳定地直线行驶。

转向系对汽车行驶的操纵性、稳定性和安全性都具有重要的意义。

改革开放以来,我国汽车工业发展迅猛。

作为汽车关键部件之一的转向系统也得到了相应的发展,基本已形成了专业化、系列化生产的局面。

有资料显示,国外有很多国家的转向器厂,都已发展成大规模的生产的专业厂,年产超够百万台,垄断了转向器的生产,并且销售点遍布了全世界。

从操纵轻便性、稳定性及安全性行驶的角度,汽车制造广泛使用更先进的工艺方法,使用变速比转向器、高刚性转向器。

“变速比和高刚性”是目前世界上生产的转向器结构的方向

几十年来,各种汽车都使用循环球式转向器。

由于这种转向器是滚动摩擦形式,因而正传动效率很高,操作方便且使用寿命长,而且承载能力大,广泛应用于载货车上。

随着上世纪五十年代起,液压动力转向系统在汽车上的应用,标志着转向系统革命的开始。

汽车转向动力的来源由以前的人力转变人力加液压助力。

液压助力系统HPS是机械式转向系统的基本上增加了一个液压系统而成。

由于工作可靠、技术成熟至今仍被广泛应用。

从70年代起轿车兴起了齿轮齿条转向器,这种转向机构由方向盘、转向轴、万向节、转动轴、转向器、转向传动杆和转向轮等组成。

方向盘操纵转向器内的齿轮传动,齿轮与齿条紧密啮合,推动齿条左移动或右移动,带动转向轮摆动,从而改变轿车行驶的方向。

这种转向机构与循环球式等其它类型的转向机构比较,省略了转向摇臂和转向主拉杆,具有构件简单,传动效率高的优点。

而且它的逆传动效率也高,在车辆行驶时可以保证偏转车轮的自动回正,驾驶者的路感性强。

近年来,随着电子技术在汽车中的广泛应用,转向系统中也越来越多地采用电子器件。

但目前电子转向系统由于自身成本等因素的制约,很难在价格低廉的家用轿车上得到普及,而且电子转向系统的安全可靠性相对较差,目前欧洲汽车法规中要求驾驶员与转向车轮之间必须有机械连接,电子转向系还不允许在欧洲上市。

2007年中国汽车销售879.15万辆,2008年中国汽车销售938万辆,2009年预计增长8.6%,达到1019万辆。

汽车产销量的逐步增长为汽车转向机市场提供了一个较大的发展空间,2008年市场对转向机行业需求有所减缓,在需求增长有所减缓的现状下,产能扩张的势头并没有得到较好的控制。

产能过剩、重复建设不仅导致生产与消费的失衡,而且还引发了转向机行业内的一系列恶性价格竞争,影响了转向机行业业的盈利能力。

中国转向机行业市场现状,为外资企业入驻中国创造了条件,国际许多转向机行业企业已经看中在中国低成本拓展市场的机会,随着外资投入逐步加大,中国国内企业改革重组迅速加快。

同时新的行业制度等政策的颁布和实施将促使我国转向机行业洗牌,企业兼并重组将在政策的促使下大力发展。

据了解,在世界范围内,汽车循环球式转换器占45%左右,齿轮齿条式转换器占40%左右,涡杆滚轮式转换器占10%左右,其他型式的转换器占5%。

循环球式转换器一直在稳步发展。

在西欧小客车中,齿轮齿条式转换器有很大的发展。

日本汽车转向器的特点是循环球式转换器占得比重越来越大,日本装备不同类型发动机的类型汽车,采用不同类型转向器,在公共汽车中使用的循环球式转换器,已由60年代的62.5%,发展到现今的100%了,大、小型货车大都循环球式转换器,但齿轮齿条式转换器也有所发展。

微型货车用循环球式转换器占65%,齿轮齿条式占35%。

1.3转向器发展趋势

1.3.1汽车转向技术的发展趋势

(1)新型转向机构的研究与应用:

围绕减小转向机构的误差、优化转向机构的设计、减轻转向机构的磨损、提高转向机构的效率等方面开展工作,加强新型转向机构的研究与应用已成为生产企业和科研单位的追求的目标。

(2)动力转向技术的推广:

为减轻驾驶员疲劳,提高操纵轻便性和稳定性,动力转向系统的应用日益广泛,不仅在重型汽车上必须采用,在高级轿车上应用较多,而且在中型汽车上也已逐渐推广。

(3)考虑主动安全性的转向技术:

从操纵轻便性、稳定性和安全行驶的角度,广泛使用更先进的工艺方法制造、使用变速比转向器、高刚性转向器,采用防碰撞安全转向柱、安全带、安全气囊等,并逐步推广。

新时代下的汽车转向装置设计充分考虑了驾乘的舒适性和安全性,诸如4WS转向技术的应用、EPS动力转向技术的应用等等。

(4)先进电子技术和控制技术在转向系统中的应用:

随着传感技术、控制技术的不断发展及在汽车中的应用,可以从多方面改善转向系统的各种性能,诸如汽车的低速行驶轻便性、汽车的稳态转向特性、汽车的回正能力、转向盘中间位置操纵稳定性、前轮的摆振等等。

1.3.2汽车转向装置的设计趋势

(1)适应汽车高速行驶的需要[1-4]:

从操纵轻便性,稳定性及安全行驶的角度,汽车制造厂广泛使用更先进的工艺方法,使用变速比转向器、高刚性转向器。

“高速比和高刚性”是目前世界上生产的转向器结构的方向。

(2)充分考虑安全性、轻便性:

随着汽车车速的提高,驾驶员和乘客的安全非常重要,目前国内外在许多汽车上已普遍增设能力吸收装置,如防碰撞安全转向柱、安全带、安全气囊等,并逐步推广。

从人类工程学的角度考虑操纵的轻便性,一逐步采用可调整的转向管柱和动力转向系统。

(3)低成本、低耗能、大批专业化生产:

随着国际经济形势的恶化,石油危机造成经济衰退,汽车生产愈来愈重视经济性,因此。

要设计低成本、低耗能的汽车和低成本、合理化生产线,尽量实现大批专业化生产。

对零部件生产,特别是转向器的生产,更表现突出。

(4)汽车转向器装置的电脑化:

未来汽车的转向器装置,必定是以电脑化为唯一的发展途径。

1.4转向器概述

1.4.1汽车转向基本要求及其关键技术

为使汽车实现车轮无侧滑的转向,车轮的偏转必须满足阿克曼特性,即在汽车前轮定位角都等于零、行走系统为刚性、汽车行驶过程中无侧向力的前提下,整个转向过程中全部车轮必须围绕同一瞬时中心相对于地面作圆周滚动,例如对于图1.1所示两轮转向情况,前内轮转角b与前外轮转角a之间应满足如下阿克曼转向特性公式:

cosα-cosβ=B/L(1.1)

图1.1阿克曼两轮转向要求

车轮的偏转是通过转向机构带动的。

对于两轮转向汽车,为减小车轮侧滑,转向机构应使两前轮偏转角在整个转向过程中始终尽可能精确地满足式(1.1)关系。

因此从运动学角度来看,两轮转向机构的设计涉及到的关键技术主要是:

(1)机构的形式设计,即确定能满足转向传动功能要求的机构结构组成;

(2)机构的尺度设计,即确定能近似再现式(1.1)关系的机构运动尺寸。

从系统和机构学角度来看,转向系统的组成及其相互关系可用框图1.2表示,其中转向机构是该系统的执行机构。

 

图1.2转向传动系统的组成

1.4.2两轮转向及其实现技术

1.转向技术的发展概况[5-6]:

两百年前在汽车刚刚诞生的初期,其转向操纵是仿照马车和自行车的转向方式,即用一个操纵杆或手柄直接使前轮偏转。

1817年,德国人林肯斯潘杰(LenKenSperge)发明了转向梯形机构,并将在英国获得的专利权转让给了阿克曼(Ru-dolphAckerman)。

现在人们常将转向梯形的特性关系式(1.1)称为阿克曼公式。

1857年,英国的达吉恩蒸汽汽车(Dud-geonSteamer)是首次采用方向盘的机动车辆。

1872年苏格兰的查理士·鲁道夫(CharlesRandolph)第一个把方向盘装到煤气发动机车辆上。

1886年,英国的弗雷德里克·斯特里克兰(FrederiekStrickland)及汽车制造商德雷克(A.J.Drak)将船用转向柱和方向盘技术应用到新式戴姆勒·弗顿(DaimlerPhantom)敞篷车上。

1890年戴姆勒·帕利生(DaimlrParirian)制成转向柱与方向盘倾斜的第一辆汽车。

进入20世纪后,相关科技的进步带动了汽车设计技术与汽车工业的迅速发展,但对于转向传动系统的研究主要集中在转向器的型式和转向执行机构的尺寸优化设计等方面,而在两轮转向原理以及两轮偏转联动实现方式等方面并未有新的突破。

2.前两轮转向技术的主流:

(1)与非独立悬架配用的转向机构

1)转向梯形后置,转向直拉杆纵置:

如图1.3(a)所示,在前桥仅为转向桥时,由转向横拉杆5和左、右转向梯形臂4组成的转向梯形一般布置在前桥之后,以避免其在转向过程中与车轮发生干涉。

解放CA141、东风EQ140等汽车都是采用这种转向机构。

(a)(b)(c)

图1.3与非独立悬架配用的转向机构

1—转向摇臂2—转向直拉杆3—转向节臂4—梯形臂5—转向横拉杆

2)转向梯形前置,转向直拉杆纵置:

在发动机较低或转向桥兼驱动桥的情况下,为避免干涉,往往将转向梯形布置在前桥之前,如图1.3(b)所示。

3)转向梯形前置,转向直拉杆横置:

如图1.3(c)所示,若转向摇臂1不是在汽车纵向平面内前后摆动,而是在与道路平行的平面内左右摆动(如北京BJ2020N型汽车),则可将转向直拉杆2横置,并借球头销直接带动转向横拉杆5,从而使两侧梯形臂转动。

(2)与独立悬架配用的转向机构

图1.4为循环球式(BS型)转向器配用的转向机构,转向摇臂1为主动件,绕固定铰点作往复摆动。

其中图1.4(a)中两根转向横拉杆3、4布置在车轴的后方,形成两段式结构,如红旗CA7560型轿车即采用了这种转向机构;图1.4(b)中两根转向横拉杆3、4布置在车轴的前方,和转向直拉杆2一起构成三段式的前置梯形结构,丰田海艾斯轿车转向机构就采用这种布置形式。

(a)(b)

图1.4与循环球式转向器配用的转向机构

1—转向摇臂2—转向直拉杆3—左转向横拉杆4—右转向横拉杆5—左梯形臂

6—右梯形臂7—摇杆8—悬架左摆臂9—悬架右摆臂

(a)(b)

图1.5与齿轮齿条式转向器配用的转向机构

图1.5为齿轮齿条式(RP型)转向器配用的转向机构两种布置形式,其中图1.5(a)中转向器位于前轴后方,前置梯形,应用实例为奥迪100轿车;图1.5(b)转向器位于前轴前方,前置梯形,在IVECO45-10型汽车中得到了应用。

前面所列仅为转向器和转向梯形机构结合的基本形式,实际使用中尚有许多情况,限于篇幅,在此不一一列出。

3.转向的存在问题:

(1)汽车两轮转向技术虽经历了近两百年的发展,但仍存在如下主要问题:

两轮转向汽车在转弯时,现有各类转向机构均不能保证全部车轮绕瞬时中心转动,从而在技术上难以完全消除车辆行驶中的车轮侧滑。

(2)独立悬架汽车中的转向梯形断开点难以确定,这将导致了横拉杆与悬架导向机构之间运动不协调,使汽车在行驶中易发生摆振,从而加剧轮胎磨损,转向性能随车

速、转向角、路面状态的变化而变化,车速越高,操纵稳定性越差。

(3)在采用两轮转向方式时转弯半径较大,汽车的机动灵活性不高。

随着电子技术的不断发展及在汽车中的应用,可以从多方面改善转向系统的各种性能,但这种改善往往是局部的和微小的。

基于两轮转向方式的汽车转向技术发展至今,应该说已经到了一个顶峰,就目前的技术和经济性而言,两轮转向在性能上难以再有突破性进展。

1.4.3四轮转向及其实现技术

1.转向方式的提出及其特点:

鉴于两轮转向方式存在的诸多不足,日本于20世纪60年代首先提出通过四轮转向方式来提高汽车的操纵稳定性,到20世纪80年代末,四轮转向系统得到实际应用。

1990年,本田、马自达、尼桑三家汽车公司首先在部分轿车上推出了四轮转向系统。

1991年,美国克莱斯勒和日本的三菱也推出了四轮转向车型。

所谓四轮转向,是指车辆行驶过程中四个车轮能同时发生偏转的转向方式。

其中后轮偏转角一般不超过5°。

根据转向时前、后轮偏转方向的异同分为同向偏转及逆向偏转两类。

对于行驶中的四轮汽车,当采用同向偏转时,车身的动态偏转减小,从而可显著提高汽车高速行驶稳定性;当采用逆向偏转时,则可显著减小汽车转弯半径,如图1.6所示,由此增加了低速行驶的灵活性,有利于汽车的转向调头。

因此采用四轮转向方式时,在一定程度上提高了横摆角速度和侧向加速度的瞬态响应性能指标,如图1.7所示。

所以四轮转向方式具有转向能力强、转向响应快、直线行驶稳定性高、低速机动性好等优点。

图1.62WS与4WS转弯半径的比较图1.72WS与4WS车辆转向特性比较

2.轮转向驱动方式:

转向的关键是如何将转向盘的转动量传递给前后转向轮,并为转向轮提供动力使其发生协调、联动偏转。

本文根据转向盘转动量传递途径以及转向轮动力来源的不同,对四轮转向系统作如下的分类:

(1)集中驱动四轮转向系统:

当用机械传动链将转向盘的转动量分别传递给前后轮转向机构,从而在前后转向轮偏转量与转向盘的转动量之间形成确定的机械联系时,即属集中驱动四轮转向系统。

其结构框图如图1.8所示,其中前后转向轮偏转的驱动动力来自于转向盘以及由液压系统等提供的辅助动力。

 

图1.8集中驱动四轮转向系统结构框图

此类集中驱动转向系统可进一步分为机械式和机电控制式两种,其差异主要在后轮偏转方向的操纵方式上。

机械式集中驱动四轮转向系统没有图1.8中的电子控制单元虚框,前后轮的偏转方向和偏转角大小均由转向盘操纵,并通过机械传动链获得确定的协调关系。

这种四轮转向系统结构简单,转向特性固定,与车速无关。

对于机电控制式集中驱动四轮转向系统,后轮偏转角大小由转向盘操纵,而后轮偏转方向则根据传感器获取的前轮偏转方向与角度以及车速信息由控制单元确定。

集中驱动四轮转向系统的制造成本较低,但当传动链零件磨损后不能精确保证前后轮转角大小关系。

(2)分散驱动四轮转向系统:

 

图1.9分散驱动四轮转向系统结构框图

在图1.9所示分散驱动四轮转向系统中,前轮转向动力由转向盘直接提供,前转向轮偏转方向及偏转量与转向盘转动量之间通过机械传动链形成确定关系;后转向轮偏转的操纵由专门的液压系统或电动机提供动力,至于后轮偏转方向及偏转量则根据传感器获取的转向盘转动方向与转角信息以及车速等其他信息由控制单元综合确定。

分散驱动四轮转向系统的基本特征在于:

前后转向轮偏转的驱动动力是分开的,前后转向轮偏转方向和偏转角度之间不是靠机械传动链形成固定的联系,而是靠电子控制系统进行协调控制实现预设关系,因此后轮转向控制灵活、方便,能够获得更加精确和复杂的转向特性。

3.轮转向的研究方向:

对4WS转向技术的研究主要表现在硬件技术和软件技术两个方面。

硬件技术的发展体现在如何采用新材料、新工艺、新结构等来更好地发挥出四轮转向的优势,更好地实现四轮转向系统所预定的目标;研究和开发高灵敏度、高精度、低成本的传感器和控制系统,为4WS系统的具体应用提供可靠成熟的技术条件。

目前,四轮转向技术研究的潮流主要表现在对控制理论等软件技术的研究上。

将最先进的控制理论与控制方法不断应用于4WS控制器的开发中,同时将人的因素考虑到操纵控制中去,研究由驾驶员、车辆和行驶环境所构成的闭环系统。

尽管目前科研人员从结构到控制原理上对四轮转向进行了大量的研究,但尚未取得突破性进展,四轮转向技术还没有真正地步入全面推广阶段。

其主要原因在于尽管四轮转向车的一些开环指标有较大程度的改善,但是对其进行主观评价的效果并不理想。

这就要求从主观评价出发,考虑闭环综合性能指标,即将人—车—路看成一个系统,建立合理、可行的闭环性能评价体系,实现主观评价与客观评价的统一。

另外,还要把四轮转向技术与其他主动安全技术(如ABS、ASR、VDC等)相结合,获得更高的车辆主动安全性。

1.5设计的预期成果

本次设计,我将取得如下成果:

1、设计说明书:

(1)齿轮齿条式转向器各零件的结构;

(2)齿轮齿条式转向器主要参数的选择与优化;(3)齿轮轴的设计计算;(4)调整弹簧的设计计算;(5)轴承的选择。

2、图纸有:

齿轮齿条式转向器、转向齿轮、转向齿条、转向蜗杆箱、齿条衬套套管、转向拉杆、万向传动节、齿条支撑、调整螺塞。

 

第2章设计方案的选择

2.1转向器类型的选择

汽车转向系可按转向能源的不同分为机械式转向系和动力转向系两大类。

汽车转向器是用来保持或改变汽车行驶方向的机构,在汽车转向行驶时,还要保证各转向轮之间有协调的转角关系。

驾驶员通过操纵转向系统,使汽车保持直线或转弯运动状态,或者上述两种运动状态相互转换。

机械转向系的能量来源是人力,所有传力件都是机械的,由转向操纵机构、转向器、转向传动机构三大部分组成。

其中转向器是将操纵机构的旋转运动变为传动机构的直线运动的机构,是转向系的核心部件。

转向器按结构形式可分为多种类型。

历史上曾出现过许多种形式的转向器,目前较常用的有齿轮齿条式、蜗杆曲柄指销式、循环球-齿条齿扇式、循环球曲柄指销式、蜗杆滚轮式等。

其中第二、第四种分别是第一、第三种的变形形式,而蜗杆滚轮式则更少见。

如果按照助力形式,又可以分为机械式(无助力),和动力式(有助力)两种,其中动力转向器又可以分为气压动力式、液压动力式、电动助力式、电液助力式等种类

齿轮齿条式转向器[7-9]:

齿轮齿条式转向器是一种最常见的转向器,其基本结构是一对相互啮合的小齿轮和齿条。

转向轴带动小齿轮旋转时,齿条便做直线运动。

有时,靠齿条来直接带动横拉杆,就可使转向轮转向。

所以这是一种最简单的转向器。

齿轮齿条式转向器可分为两端输出式和中间(或单端)输出式两种。

优点:

结构简单

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 自然科学 > 物理

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2