一元二次方程的概念及其解法doc.docx

上传人:b****0 文档编号:9119368 上传时间:2023-05-17 格式:DOCX 页数:36 大小:52.35KB
下载 相关 举报
一元二次方程的概念及其解法doc.docx_第1页
第1页 / 共36页
一元二次方程的概念及其解法doc.docx_第2页
第2页 / 共36页
一元二次方程的概念及其解法doc.docx_第3页
第3页 / 共36页
一元二次方程的概念及其解法doc.docx_第4页
第4页 / 共36页
一元二次方程的概念及其解法doc.docx_第5页
第5页 / 共36页
一元二次方程的概念及其解法doc.docx_第6页
第6页 / 共36页
一元二次方程的概念及其解法doc.docx_第7页
第7页 / 共36页
一元二次方程的概念及其解法doc.docx_第8页
第8页 / 共36页
一元二次方程的概念及其解法doc.docx_第9页
第9页 / 共36页
一元二次方程的概念及其解法doc.docx_第10页
第10页 / 共36页
一元二次方程的概念及其解法doc.docx_第11页
第11页 / 共36页
一元二次方程的概念及其解法doc.docx_第12页
第12页 / 共36页
一元二次方程的概念及其解法doc.docx_第13页
第13页 / 共36页
一元二次方程的概念及其解法doc.docx_第14页
第14页 / 共36页
一元二次方程的概念及其解法doc.docx_第15页
第15页 / 共36页
一元二次方程的概念及其解法doc.docx_第16页
第16页 / 共36页
一元二次方程的概念及其解法doc.docx_第17页
第17页 / 共36页
一元二次方程的概念及其解法doc.docx_第18页
第18页 / 共36页
一元二次方程的概念及其解法doc.docx_第19页
第19页 / 共36页
一元二次方程的概念及其解法doc.docx_第20页
第20页 / 共36页
亲,该文档总共36页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

一元二次方程的概念及其解法doc.docx

《一元二次方程的概念及其解法doc.docx》由会员分享,可在线阅读,更多相关《一元二次方程的概念及其解法doc.docx(36页珍藏版)》请在冰点文库上搜索。

一元二次方程的概念及其解法doc.docx

一元二次方程的概念及其解法doc

 

一元二次方程的概念及解法和讲义

知识点一:

一元二次方程的概念

(1)定义:

只含有一个未知数,并且未知数的最高次数是2,这样的整式方程就

......................

是一元二次方程。

(2)一般表达式:

ax2bxc0(a0)

(3)四个特点:

(1)只含有一个未知数;

(2)且未知数次数最高次数是2;

(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式

方程,若是,再对它进行整理.如果能整理为

ax2

bxc

0(a

0)的形式,

则这个方程就为一元二次方程.

(4)将方程化为一般形式:

ax2

bx

c

0时,应满足(a≠0)

例1:

下列方程①x2+1=0;②2y(3y-5)=6y2+4;③ax2+bx+c=0;④1

5x30,

x

其中是一元二次方程的有

变式:

方程:

①2x21

1②2x2

5xy

y2

0③7x2

10

④y2

0中一元

3x

2

二次程的是

例2:

一元二次方程(13x)(x

3)

2x2

1化为一般形式为:

二次项系数为:

,一次项系数为:

,常数项为:

变式1:

一元二次方程3(x—2)2=5x-1

的一般形式

,二次项系数是

,一次项系数

,常数项是

变式2:

有一个一元二次方程,未知数为

y,二次项的系数为-1,一次项的系数

为3,常数项为-6,请你写出它的一般形式______________。

例3:

在关于x的方程(m-5)xm-7+(m+3)x-3=0中:

当m=_____时,它是一元二次方程;当m=_____时,它是一元一次方程。

变式1:

已知关于x的方程(m+1)x2-mx+1=0,它是(

A.一元二次方程

B

.一元一次方程

C.一元一次方程或一元二次方程

D.以上答案都不对

变式2:

当m

时,关于x的方程(m3)xm27

x

5是一元二次方程

 

知识点二:

一元二次方程的解

(1)概念:

使方程两边相等的未知数的值,就是方程的解。

(2)应用:

利用根的概念求代数式的值;

【典型例题】

 

1.

已知x

2是一元二次方程x2

mx

2

0的一个解,则m的值是(

A.3

B.3

C.0

D.0或3

2.

已知2

y

2

y

3

的值为

,则

4y

2

2y

1

的值为

2

3.

若x=a

是方程x2-x-2015=0

的根,则代数式2a2-2a-2015值

4.

关于x的一元二次方程

2

2

2

4

0

,则

的值

a

x

x

a

的一个根为0

a

5.

已知关于x的一元二次方程ax2

bx

c

0a

0的系数满足ab

c

0,则

此方程必有一根为

【举一反三】

1.

已知关于x的方程x2

kx6

0的一个根为x

3,则实数k的值为(

A.1

B.1

C.2

D.2

2.

若m2-5m+2=0,则2m2-10m+2016=

3.

若关于x的方程(a+3)x2-2x+a

2-9=0有一个根为0,则a=

4.

一元二次方程ax2+bx+c=0,若4a-2b+c=0

,则它的一个根是

5.若x=1是关于x的一元二次方程ax2bxc0a0一个根,求代数式

2007(a+b+c)的值

 

知识点三:

解一元二次方程

一元二次方程的解法:

直接开平方法、配方法、公式法、因式分解法.

 

一:

直接开平方法

利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平

方法。

直接开平方法适用于解形如(x

m)2

n的一元二次方程。

根据平方根的定

义可知,xm是n的平方根,当n

0时,xm

n,x

mn,当n<0

时,方程没有实数根。

用直接开平方法解一元二次方程的理论根据是平方根的定义,达到降次转化之目的。

(1)形如x

2

p。

当p=0时,x1x20

p(p

0)的方程的解是x=

 

(2)形如mxn

2

0的方程的解为x=

p

n。

pp

m

形如mx

a

2

的方程可先化成

x

2

n的形式,再用直接开

n0

a

m

平方法解。

【例题讲解】

1、方程(x-2)2=9的解是(

A.x1=5,x2=-1

B.x1=-5,x2=1C.x1=11,x2=-7

D.x1=-11,x2=7

2、若方程x2=m的解是有理数,则实数

m不能取下列四个数中的(

A.1

B

.4

C

.1

D

.1

4

2

2

3、对于形如x

p的一元二次方程,能直接开平方的条件是

___________________。

4、方程x

2

16

0的根是________________________。

5、用直接开平方法解下列方程:

2

2

2

(1)16x

81

(2)3m

24

 

2

2

(3)9x250

(4)42x1360

 

【同步训练】

1、用直接开平方法解方程(x-3)2=8,得方程的根为(

A.x=3+2

3

B

1

2

2

2

.x=3+2

,x=3-2

C.x=3-2

2

D

1

=3+2

3

2

3

.x

,x=3-2

2、方程1

(x-3)2=0的根是(

2

A.x=3B.x=0C.x1=x2=3D.x1=3,x2=-3

3、方程2x

2

6

900的根是________________________。

4、方程t2

2

169的根是_____________________。

5、用直接开平方法解下列方程:

128

(1)x7

0

(2)12y1

2

2

 

(3)

4(3

x

1)2

9

0

()

2

4

4x16x169

 

二:

配方法

配方法:

将形如ax2bxc0(a0)的一类方程,化为(mxn)2p形

 

式求解的方法叫做配方法。

一般步骤:

(1)把常数项移到方程右边;

(2)方程两边同除以二次项系数,化二次项系数为1;

(3)方程两边都加上一次项系数一半的平方;

(4)原方程变形为(xm)2n的形式;

5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解.

 

【例题讲解】

1、用配方法解关于x的一元二次方程x2-2x-3=0,配方后的方程可以是(

A.(x-1)2=4

B.(x+1)2=4

C

.(x-1)2=16

D.(x+1)2=16

2、若一元二次方程式x2-2x-3599=0

的两根为a、b,且a>b,则2a-b之值为何?

A.-57

B

.63

C

.179D

.181

3、用适当的数填空:

①、x2

+6x+

=(x+

)2

②、x2-5x+

=(x-

)2;

③、x2

+x+

=(x+

)2

④、x2-9x+

=(x-

2

 

4、将二次三项式

2x2-3x-5进行配方,其结果为_________.

5、已知4x2-ax+1

可变为(2x-b)2的形式,则ab=_______.

6、将x2-2x-4=0

用配方法化成(x+a)2=b的形式为_______,?

所以方程的根

为_________.

2

2

m的值是

7、若x

+6x+m是一个完全平方式,则

8、用配方法解下列方程:

(1)

2

12

15

0

()

2

()

2

x

x

2x8x9

33x5x2

 

1

2

()

2

()

2

(4)

4

4

0

4

x

x

5x4x30

62x47x

 

9、用配方法求解下列问题

(1)求2x2-7x+2的最小值;

(2)求-3x2+5x+1的最大值。

 

【举一反三】

1.把方程x+3=4x配方,得(

A.(x-2)2=7

B.(x+2)2=21

C.(x-2)2=1

D.(x+2)2=2

2.用配方法解方程x2+4x=10的根为()

A.2±10

B.-2±14

C.-2+10

D.2-10

3.用配方法解下列一元二次方程

(1)

2

4

96

()

2

x

x

2x4x50

 

(3)

2

x

2

3

x

1

0

()

2

4

3x2x70

 

三:

公式法

(1)公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

b

2

c

2

b

2

c

b2

由配方法得

b

,化简:

x

a

2a

x

a

4a2

2a

2a

b

2

4ac

b2

2

2

4ac

b

b2

4ac

x

x

bb

x

2a

4a2

4a

2

2a

4a2

2a

4a2

x

b

b2

4ac

b

b2

4ac

2a

2a

x

2a

一元二次方程

ax2

bx

c0(a0)的求根公式:

x

b

b2

4ac

(b

2

4ac

0)

2a

x

b

b2

4ac,x

b

b2

4ac

1

2a

2

2a

 

公式法的步骤:

就把一元二次方程的各系数分别代入,这里

a为一次项系数,

b

为二次项系数,c为常数项。

 

【典型例题】

例1:

一般地,对于一元二次方程ax2+bx+c=0(a≠0),当b2-4ac≥0时,它的根

是_____,当b-4ac<0时,方程_________.

例2:

用公式法解方程x2=-8x-15,其中b2-4ac=_______,x1=_____,x2=________.

例3:

一元二次方程x2-2x-m=0可以用公式法解,则m=().

A.0B.1C.-1D.±1

例4:

不解方程,判断所给方程:

①x2+3x+7=0;②x2+4=0;③x2+x-1=0中,有实

数根的方程有()

A.0个B.1个C.2个D.3个

例5:

方程(x+1)(x-3)=5的解是()

A.x1=1,x2=-3B.x1=4,x2=-2C.x1=-1

 

,x2=3

 

D.x1=-4

 

,x2=2

例6:

一元二次方程

x2

22x

6

0的根是(

 

A.x1

x2

2

B.

x1

0,x222

C.x1

2,x232

D.

x1

2,x2

32

例7:

一元二次方程x2-3x-1=0

的解是

例8:

用公式法解下列方

(1)

3x

2

5x20;

(2)2x

2

3x

30;

()

x

2

2x10

3

 

例9:

若x2-xy-3y2=0(y>0),求x的值.

y

 

【举一反三】

1.

用公式法解方程x2=-8x-15,其中b2-4ac=_______,x1=_____,x2=________.

2.

用公式法解方程

4y2=12y+3,得到(

A.y=36

B.y=36

C.y=323

D.y=323

2

2

2

2

3.不解方程,判断所给方程:

①x2+3x+7=0;②x2+4=0;③x2+x-1=0中,有实数

根的方程有()

A.0个B.1个C.2个D.3个

 

4.用公式法解方程

(1)x2+15x=-3x;

(2)x2+x-6=0;(3)3x2-6x-2=0;(4)4x2-6x=0

 

四:

因式分解法

 

因式分解法的步骤是:

(1)将方程右边化为0;

(2)将方程左边分解为两个一次因式的乘积:

(3)令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.

例题讲解:

(1)

x2

x=;

(2)4

x

2-=;

()(

x

2)2

2

x

40

120

10

3

 

练习巩固:

(2)

x2

x-=;

(3)(

x-

1)(

x+

3)

=;

x

2+

x-=;

4

210

12(3)3

2

10

 

(4)10

x

2-x-=;

(5)(

x-

1)

2-

4(

x-

1)

-=.

30

210

 

练习巩固

用适当方法解下列方程

(1)

x2

x+=;

(2)(

x-

2)

2=;

()x

2-

x+=;

4

30

256

3

3

10

 

(4)x2-2x-3=0;(5)(2t+3)2=3(2t+3);(6)(3-y)2+y2=9;

 

(7)7-2x2=-15(8)2x22x300(9)2x2-8x=7

 

(10)

5x2

(5

2

1)

x+

10=;

(11)(

x+

5)

2-

2(

x+

5)

-=.

0

80

 

知识点四:

判定根的情况(韦达定理)

根的判别式及应用(=b24ac)0

 

判定一元二次方程根的情况:

>0,方程有两个不相等的实数根;=0,方程有两个相等的实数根;<0,方程没有实数根.

确定字母的值或取值范围:

应用根的判别式,其前提为二次项系数不为0.

韦达定理:

实系数一元二次方程ax2+bx+c=0(a≠0)存在实数解x1,x2,那么x1+x2=-b,x1x2=c.这是在初中时韦达定理的定义,但在高中时应用就更为

aa

广阔.由代数基本定理可推得:

任何一元n次方程在复数集中必有根,因此,该方程的左端可以在复数范围内分解成一次因式的乘积形式,两端比较系数即得韦达定理,所以韦达定理在复数范围内同样适用.

一元二次方程ax2

(≠)在有解的情况下,两个解为

1

b

b2

4ac,

+bx+c=0a0

x=

2a

2

bb2

4ac

,通过计算得到结论x1

2

=-

b,x12

c.

x=

+x

x=

2aaa

 

例1、已知关于x的一元二次方程x2-2x+k=0

(1)方程有两个不相等的实数根,求k的取值范围;

(2)在

(1)中当k取最大整数时,求所得方程的实数根.

 

2、已知关于x的方程kx2+1kx-2=0有两个不相等的实数根,求k的取值范围.

.........

 

例2已知x1,2是方程

2

16=0

的两实数根,求x2

x1

的值

.

x

2x+14x

x1

x2

 

练习:

1.已知x1,x2是方程3x2+2x-1=0的两个实数根,求x12x22的值.

 

2.设α,β是一元二次方程

2

2

x

+3x-7=0

的两个实数根,求ααβ的值

+4+.

 

综合练习

1、如果关于x的方程x2+px+q=0的两个根是x1,x2,那么x1+x2=-p,x1·x2=q.请

根据以上结论,解决下列问题:

(1)已知关于x的方程x2+mx+n=0(n≠0),求出一个一元二次方程,使它的两根分别是已知方程两根的倒数;

 

(2)已知a,b满足a2-15a-5=0,b2-15b-5=0,求a

b的值;

b

a

 

(3)已知a,b,c均为实数,且a+b+c=0,abc=16,求正数c的最小值.

 

2、若

 

x1,x2是一元二次方程

 

ax2+bx+c=0的两根,则有

 

x1+x2=

 

b,x1x2=c

 

.

a

a

这是一元二

次方程根与系数的关系,我们可以利用它来解题

.例如,

已知

x1,

x2是方程

x2+6x-3=0

的两根,求

x1

2+x2

2的值.

解法如下:

∵x1+x2=-6,x1x2=-3,

∴x12+x22=(x1+x2)2-2x1x2=(-6)2-2×(-3)=42.

若x1,x2是方程x2+2x-2007=0的两个根,试求下列各式的值:

(1)x1

2+x2

2;

(2)1

1;(3)

(x1-5)(x2-5);(4)|x1x2|.

x1

x2

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 经管营销 > 经济市场

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2