西门子plc基础知识西门子plc.docx

上传人:b****8 文档编号:9252403 上传时间:2023-05-17 格式:DOCX 页数:16 大小:27.31KB
下载 相关 举报
西门子plc基础知识西门子plc.docx_第1页
第1页 / 共16页
西门子plc基础知识西门子plc.docx_第2页
第2页 / 共16页
西门子plc基础知识西门子plc.docx_第3页
第3页 / 共16页
西门子plc基础知识西门子plc.docx_第4页
第4页 / 共16页
西门子plc基础知识西门子plc.docx_第5页
第5页 / 共16页
西门子plc基础知识西门子plc.docx_第6页
第6页 / 共16页
西门子plc基础知识西门子plc.docx_第7页
第7页 / 共16页
西门子plc基础知识西门子plc.docx_第8页
第8页 / 共16页
西门子plc基础知识西门子plc.docx_第9页
第9页 / 共16页
西门子plc基础知识西门子plc.docx_第10页
第10页 / 共16页
西门子plc基础知识西门子plc.docx_第11页
第11页 / 共16页
西门子plc基础知识西门子plc.docx_第12页
第12页 / 共16页
西门子plc基础知识西门子plc.docx_第13页
第13页 / 共16页
西门子plc基础知识西门子plc.docx_第14页
第14页 / 共16页
西门子plc基础知识西门子plc.docx_第15页
第15页 / 共16页
西门子plc基础知识西门子plc.docx_第16页
第16页 / 共16页
亲,该文档总共16页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

西门子plc基础知识西门子plc.docx

《西门子plc基础知识西门子plc.docx》由会员分享,可在线阅读,更多相关《西门子plc基础知识西门子plc.docx(16页珍藏版)》请在冰点文库上搜索。

西门子plc基础知识西门子plc.docx

西门子plc基础知识西门子plc

西门子plc基础学问-西门子plc

1、plc的基本概念

可编程把握器(ProgrammableController)是计算机家族中的一员,是为工业把握应用而设计制造的。

早期的可编程把握器称作可编程规律把握器(ProgrammableLogicController),简称PLC,它主要用来代替继电器实现规律把握。

随着技术的进展,这种装置的功能已经大大超过了规律把握的范围,因此,今日这种装置称作可编程把握器,简称PC。

但是为了避开与个人计算机(PersonalComputer)的简称混淆,所以将可编程把握器简称PLC。

2、PLC的基本结构

PLC实质是一种专用于工业把握的计算机,其硬件结构基本上与微型计算机相同:

a.中心处理单元(CPU)

中心处理单元(CPU)是PLC的把握中枢。

它依据PLC系统程序赐予的功能接收并存储从编程器键入的用户程序和数据;检查电源、存储器、I/O以及警戒定时器的状态,并能诊断用户程序中的语法错误。

当PLC投入运行时,首先它以扫描的方式接收现场各输入装置的状态和数据,并分别存入I/O映象区,然后从用户程序存储器中逐条读取用户程序,经过命令解释后按指令的规定执行规律或算数运算的结果送入I/O映象区或数据寄存器内。

等全部的用户程序执行完毕之后,最终将I/O映象区的各输出状态或输出寄存器内的数据传送到相应的输出装置,如此循环运行,直到停止运行。

为了进一步提高PLC的可*性,近年来对大型PLC还接受双CPU构成冗余系统,或接受三CPU的表决式系统。

这样,即使某个CPU消灭故障,整个系统仍能正常运行。

b、存储器

存放系统软件的存储器称为系统程序存储器。

存放应用软件的存储器称为用户程序存储器。

C、电源

PLC的电源在整个系统中起着格外重要得作用。

假如没有一个良好的、可*得电源系统是无法正常工作的,因此PLC的制造商对电源的设计和制造也格外重视。

一般沟通电压波动在+10%(+15%)范围内,可以不实行其它措施而将PLC直接连接到沟通电网上去。

3、PLC的工作原理

一.扫描技术

当PLC投入运行后,其工作过程一般分为三个阶段,即输入采样、用户程序执行和输出刷新三个阶段。

完成上述三个阶段称作一个扫描周期。

在整个运行期间,PLC的CPU以肯定的扫描速度重复执行上述三个阶段。

(一)输入采样阶段

在输入采样阶段,PLC以扫描方式依次地读入全部输入状态和数据,并将它们存入I/O映象区中的相应得单元内。

输入采样结束后,转入用户程序执行和输出刷新阶段。

在这两个阶段中,即使输入状态和数据发生变化,I/O映象区中的相应单元的状态和数据也不会转变。

因此,假如输入是脉冲信号,则该脉冲信号的宽度必需大于一个扫描周期,才能保证在任何状况下,该输入均能被读入。

(二)用户程序执行阶段

在用户程序执行阶段,PLC总是按由上而下的挨次依次地扫描用户程序(梯形图)。

在扫描每一条梯形图时,又总是先扫描梯形图左边的由各触点构成的把握线路,并按先左后右、先上后下的挨次对由触点构成的把握线路进行规律运算,然后依据规律运算的结果,刷新该规律线圈在系统RAM存储区中对应位的状态;或者刷新该输出线圈在I/O映象区中对应位的状态;或者确定是否要执行该梯形图所规定的特殊功能指令。

即,在用户程序执行过程中,只有输入点在I/O映象区内的状态和数据不会发生变化,而其他输出点和软设备在I/O映象区或系统RAM存储区内的状态和数据都有可能发生变化,而且排在上面的梯形图,其程序执行结果会对排在下面的凡是用到这些线圈或数据的梯形图起作用;相反,排在下面的梯形图,其被刷新的规律线圈的状态或数据只能到下一个扫描周期才能对排在其上面的程序起作用。

(三)输出刷新阶段

当扫描用户程序结束后,PLC就进入输出刷新阶段。

在此期间,CPU依据I/O映象区内对应的状态和数据刷新全部的输出锁存电路,再经输出电路驱动相应的外设。

这时,才是PLC的真正输出。

比较下二个程序的异同:

程序1:

程序2:

这两段程序执行的结果完全一样,但在PLC中执行的过程却不一样。

※程序1只用一次扫描周期,就可完成对%M4的刷新;

※程序2要用四次扫描周期,才能完成对%M4的刷新。

这两个例子说明:

同样的若干条梯形图,其排列次序不同,执行的结果也不同。

另外,也可以看到:

接受扫描用户程序的运行结果与继电器把握装置的硬规律并行运行的结果有所区分。

当然,假如扫描周期所占用的时间对整个运行来说可以忽视,那么二者之间就没有什么区分了。

一般来说,PLC的扫描周期包括自诊断、通讯等,如下图所示,即一个扫描周期等于自诊断、通讯、输入采样、用户程序执行、输出刷新等全部时间的总和。

二.PLC的I/O响应时间

为了增加PLC的抗干扰力量,提高其可*性,PLC的每个开关量输入端都接受光电隔离等技术。

为了能实现继电器把握线路的硬规律并行把握,PLC接受了不同于一般微型计算机的运行方式(扫描技术)。

以上两个主要缘由,使得PLC得I/O响应比一般微型计算机构成的工业把握系统满的多,其响应时间至少等于一个扫描周期,一般均大于一个扫描周期甚至更长。

所谓I/O响应时间指从PLC的某一输入信号变化开头到系统有关输出端信号的转变所需的时间。

其最短的I/O响应时间与最长的I/O响应时间如图所示:

第(n-1)个

扫描周期

最短I/O响应时间:

最长I/O响应时间

SIEMENSPLC在中国的产品,依据规模和性能的大小,主要有S7-200S7-300和S7-400三种,下面就简洁介绍一下该三种产品的一些特性。

S7-200

针对低性能要求的摸块化小把握系统,它最多可有7个模块的扩展力量,在模块中集成背板总线,它的网络联接有RS-485通讯接口和Profibus两种,可通过编程器PG访问全部模块,带有电源、CPU和I/O的一体化单元设备。

其中的扩展模块(EM)有以下几种:

数字量输入模块(DI)——24VDC和120/230VAC;数字量输出(DO)——24VDC和继电器;模拟量输入模块(AI)——电压、电流、电阻和热电偶;模拟量输出模块——电压和电流。

还有一个比较特殊的模块-通讯处理器(CP)——该块的功能是可以把S7-200作为主站连接到AS-接口(传感器和执行器接口),通过AS-接口的从站可以把握多达248个设备,这样就可以显著的扩展S7-200的输入和输出点数。

CPU设计

有3种手动选择操作模式:

STOP——停机模式,不执行程序;TERM——运行程序,可以通过编程器进行读/写访问;RUN——运行程序,通过编程器仅能进行读操作。

状态指示器(LED):

SF——系统错误或(和)CPU内部错误;RUN——运行模式,绿灯;STOP——停机模式,黄灯;DP——分布式I/O(仅对CPU-215)。

存储器卡——用来在没电的状况下不需要电池就可以保存用户程序。

PPI口用来连接编程设备、文本显示器或其他CPU。

S7-300

相比较S7-200,S7-300针对的是中小系统,他的模块可以扩展多达32个模块,背板总线也在模块内集成,它的网络连接已比较成熟和流行,有MPI(多点接口)、Profibus和工业以太网,使通讯和编程变的简洁和多选性,并可以借助于HWConfig工具可以进行组态和设置参数。

S7-300的模块略微多一点,除了信号模块(SM)和200的EM模块同类型之外,它还有接口模块(IM)——用来进行多层组态,把总线从一层传到另一层;占位模块(DM)——为没有设置参数的信号模块保留一个插槽或为以后安装的接口模块保留一个插槽;功能模块(FM)——执行特殊功能,如计数、定位、闭环把握相当于对CPU功能的一个扩展或补充;通讯处理器(CP)——供应点对点连接、Profibus和工业以太网。

CPU设计

模式选择器有:

MRES=模块复位功能;STOP=停止模式,程序不执行;RUN=程序执行,编程器只读操作;RUN-P=程序执行,编程器可读写操作。

状态指示器:

SF,BATF=电池故障;DC5V=内部5VDC电压指示;FRCE=表示至少有一个输入或输出被强制;RUN=当CPU启动时闪烁,在运行模式下常亮;STOP=在停止模式下常亮,有存储器复位恳求时慢速闪烁,正在执行复位时快速闪烁。

MPI接口用来连接到编程设备或其他设备,DP接口用来直接连接到分布式I/O。

S7-400

同300的区分主要?

--*婺:

托阅苌细看螅舳嘈陀欣淦舳–RST)和热启动(WRST)之分,其他基本一样。

哦,它还有一个外部的电池电源接口,当在线更换电池时可以向RAM供应后备电源。

编程设备

编程设备主要有PG720PG740PG760——可以理解成装有编程软件的手提电脑;也可以直接用安装有STEP7(SIEMENS的编程软件)的PC来完成。

而实现通讯(要编程首先要和PLC的CPU通讯上)的要求主要在于接口:

1.可以在PC上装CP5611卡——上面有MPI口,可用电缆直接连接。

2.加个PC适配器,把MPI口转换成RS-232口后接到PC上。

3.PLC加CP343卡,使它具有以太网口。

一个工程的建立

项目管理

每个自动化过程都是由很多较小的部分和子过程组成,所以工程建立的第一个任务是分解子任务。

而每个子任务定义了自动化系统要完成的硬件和软件要求。

其中硬件包括输入/输出数目和类型,对应模块序号和类型,所用机架号,CPU型号和容量,hmi(人机界面)系统,网络系统。

软件方面主要是程序结构,自动化过程中的数据管理,组态数据、通讯数据及程序和项目文档。

在SIEMENS的S7中,上述工作都在项目管理(SIMATIC管理器),包括必需的硬件(+组态),网络(+组态),全部程序和自动化解决方案的数据管理。

F1在线挂念。

SIMATIC管理器管理STEP7项目,编写STEP7用户程序的工具,有梯形图LAD,语句表STL,和功能块图FBD,编程语言。

利用编程器或外部编程器可以把用户程序保存到EPROM卡上。

SIMATIC管理器是一个在线/离线编辑S7对象的图形化用户界面,这些对象包括项目、用户程序、快、硬件站和工具。

此管理器的用户界面中工具条和WINDOWS差不多,就是多了几个PLC菜单——显示访问节点、存储器卡、下载、仿真模块。

注:

由于目前主流系统是S7-300,所以下面的操作基本以S7-300为主,而实际过程由于配置的不同可能会有所不同。

STEP7项目结构:

项目中,数据以对象形式存储,按树型结构组织。

第一级:

包含项目图表,每个项目代表和项目存储有关的一个数据结构。

其次级:

站(如S7-300)用于存放硬件组态和模块参数等信息,站是组态硬件的起点。

S7程序文件夹是编写程序的起点,全部S7系列的软件均放在S7程序文件夹下,它包含程序块文件和源文件夹。

SIMATIC的网络图表(MPI、Profibus、工业以太网)

第三级和其他级:

和上级对象类型有关。

编程器可离线/在线查看项目——OFFLINE:

编程器硬盘上的内容;ONLINE:

通过网线从PLC读到的内容。

菜单选项:

在OPTIONS-CUSTOMIZE设置语言、助记符、常用特性(存储位置、系统信息显示)。

创建一个项目:

FILENEWNEWPROJECT

插入S7程序块:

INSERTPROGRAMS7PROGRAM

插入S7块:

INSERTS7BLOCK然后可选:

1:

组织块(OB)被操作系统调用,他们是操作系统和用户程序的接口。

2:

功能FC和功能块FB是实际的用户程序利用他们可以把简单的程序分解成小的,易于调试的单元。

3:

数据块存储用户的数据。

选择所需块类型后,会打开一个属性对话框,其中可输入块序号和要使用的编程语言,及其他设置。

补充一下:

1、内存总清——MRES=MEMORYRESET,经过MRES的模块相当于一个新模块,所以请务必谨慎。

方法是:

放在MRES足够时间,到STOP指示灯闪2下;弹回到STOP再快速放到MRES,此时STOP快速闪6下——内存清空,将删除全部用户程序数据,硬件测试和初始化,假如此时装有EPROM卡,把卡内容COPY到内部RAM区。

2、SIEMENS的信号模块(SM)结构设计,接线格外便利,更换摸板无需接线(可拔下来)。

固定方式有弹簧和螺钉连接两种。

3、对于软件的授权:

在光盘安装后以后,肯定要用软盘(权盘)授权,对于重装系统或软件的,肯定要先”收回“权到软盘以后,才进行,以便重装以后再次授权,否则只能联系西门子了。

硬件组态和存储器概念

S7-300的存储器概念:

装载存储器是一个可编程模块,它包括建立在编程设备上的装载对象(规律块、数据块和其他信息),它可以是存储器卡或内部集成的RAM。

存储器卡一般有两种,其中,当接受RAM存储器卡时,系统必需配备电池,当接受FlashEPROM存储器卡时,则断电不会丢失,但内部RAM中的数据仍需电池保持。

工作存储器仅包含和运行时间使用的程序和数据,RAM工作存储器集成在CPU中,通过后备电池保持。

系统存储器包括过程映象输入和输出表(PII,PIQ),位存储器,定时器,计数器和局部堆践。

保持存储器是非挥发的RAM,即使没有安装后备电池也可用来保持某些数据,设置CPU参数时要指定保持的区域。

从上述概念可知,假如我们在线修改程序,被修改的块存放在工作存储器中,当把程序上载到编程器时,就从工作存储器传到编程器。

由于断电会导致RAM数据的丢失,所以假如要平安保存被修改的程序,就必需保存在FEPROM或硬盘上。

硬件组态和参数安排

一些概念:

组态就是指在硬件组态的站窗口中安排机架、块可分布式I/O,可从硬件名目中选择部件;参数安排就是建立可安排参数模块的特性,例如启动特性、保持区等;设定组态就是设定好的硬件组态和参数安排;实际组态指已存在的实际组态和参数安排,一般是在已装配的系统中,从PLC的CPU中读出来的。

组态过程:

启动硬件组态:

新建一个项目(PROJECT),选择该项目,并插入(INSERT)一个站(STATION),在SIMATIC管理器中选择硬件站(HARDWARE)双击OPEN即可,我们同时可以打开硬件名目——VIEW-CATALOG,假如选择标准硬件名目库,它会供应全部的机架、模块和接口模块。

产生硬件组态:

主要选择机架,指定模块如何在机架摆放。

具体是:

1、在硬件名目中打开一个SIMATIC300站的RACK-300(例如是300),双击或拖到左边窗口。

这样在左边的窗口中就消灭两个机架表:

上面的部分显示一个简表,下面的部分显示带有定货号、MPI地址和I/O地址的具体信息。

2、电源:

双击或拖拉名目中的“PS-300”模块,放到表中的一号槽位上。

3、CPU:

从CPU-300的名目中选择你所配置的CPU,列入2号槽位。

4、3号槽—一般接口模块保留(用于多层组态),在实际配置中,假如这个位置要保留以后安装接口模块,在安装时就必需插入一个占位模块。

5、信号模块:

从4号槽位开头最多可以插入八块信号模块(SM卡),包括通讯处理器(CP)和功能模块(FM)。

CPU——属性包括通用属性General(主要供应模块的类型,位置和MPI地址—假如要把几个PLC通过MPI接口组成网络,每个CPU安排不同的MPI地址);启动项目START.UP(主要选择三种启动方式,HOT—从断电时的语句,也就是程序断电处开头,WARM—从头,也就是程序第一步开头,COLD—冷启动;监视时间包括从模块读预备的信息时间和传递参数到模块的时间;可保存数量RetentiveMemory:

用来指定当消灭断电或从STOP到RUN切换时需要保持的存储器区域;循环/时钟存储器;爱护功能(设定钥匙权限和各种级别及口令);诊断/时钟。

保存下载及上传:

经过上述设置以后,我们就可以保存、编译、全都性检查后,把设定组态下载到PLC中。

当然,对实际运行的PLC,我们也可以通过上传(UploadStation)把实际组态读到编程器。

硬件诊断及组态中可能消灭的问题:

在SIMATIC管理器中可以用PLC-DiagnoseHardware来获得PLC的诊断状态。

在实际组态过程中最可能消灭的问题是以下几点:

1、在S7-300中,组态中有空位置,此时组态不能编译通过;

2、不正确的CPU(例如:

是CPU315-2DP,不是CPU314)此时组态不能下载;

3、模拟量模块安排到不正确的槽位置,此时CPU会由于参数安排错误进入STOP模式;

4、模拟量模块不正确的测量范围,导致模拟量模块组态错误。

块的编辑

STEP7编程语言:

LAD梯形图/FBD功能块图/STL语句表,更加丰富,更加机敏,但对初学者比较难以理解,当然某些语言不能用LAD表达。

块编辑的启动:

选择所需编程语言,双击打开需编辑的块,如OB1或FC1等。

当接受LAD或FBD编程语言时,可用工具条来插入简洁的程序文件,当接受STL,则可用在线挂念得到有关语言的语法和功能——HELP-HelponSTL。

编程器组成:

声明表:

属于块,为块声明变量和参数;代码区:

包含程序本身;编程元件:

可选打开或关闭,内容依靠于所选择的编程语言,双击插入或拖拉插入。

VIEW菜单:

可切换到另一种语言,并可实现LAD/FBD/STL之间的转换,要知道,LAD/FBD转换成STL的,在语句表中可能不是最有效程序。

而STL转换成其他则不肯定行,转换不了的仍用语句表示,转换过程绝不会丢失程序。

其他菜单由于篇幅较大,请最好结合教材及软件自己生疏。

在争辩调用块前先介绍一下OB1块——主循环块,确定不能改名或删除,它是由操作系统循环调用,可以访问其他的S7程序块,它包括自身程序和其他块的调用。

所以,当我们编辑好一个块以后,如FC1,为了让新块集成在CPU中的循环程序中,必需在OB1中调用。

即在OB1中CALLF1。

子程序(新块FC1)执行的条件有以下三个:

已经下载到PLC中,必需在OB1调用,PLC处于运行状态。

下载到实际的PLC时,我们可以选择全部块或其中的一个或几个,再Download到PLC中。

程序的执行过程:

当PLC得电或从STOP切换到RUN模式,CPU会执行一次全启动(使用OB100)在全启动期间,操作系统清除非保持位存储器、定时器和计数器,删除中断堆笺和块堆笺,复位全部保存的硬件中断,并启动扫描循环监视时间。

CPU的循环操作包括三个主要部分:

CPU检查输入信号的状态并刷新过程影象输入表(PII..);执行用户程序,也就是OB1中的程序及一些大事(中断等);把过程输出影象输出表(PIQ)写到输出模块。

上面所提到的PII/PIQ是CPU中特定的存储器,用来保存输入模块/输出模块的信号,在用户程序中检查时,可以保证在一个扫描周期内为同样的信号状态。

程序结构:

上面曾经提到过,一个比较简洁的程序,我们可以不用各种子程序块(如FC.FB),而是直接把整个程序直接写在一个块上(通常是OB1主块上),CPU逐条的处理指令,我们称这种叫线形编程;而对略微有点简单的程序,我们可以把它分成几个块,每块包含处理一部分任务的程序,在每一个块中可以进一步分解、成几个段,可以为相同类型的段生成段模块,组织块OB1包含按挨次调用其他块的指令,我们把这种方法叫分块编程;另外,对可重复使用的功能装入单个块中,OB1(或其他块)调用这些块并传递相关参数,这种方法叫结构化编程。

用户块(程序块)包括程序代码和用户数据,在结构化程序中,一些块循环调用处理,一些块需要时才调用。

程序块共有组织块(OB)、功能块(FB)、功能(FC)、系统功能块(SFB)和系统功能(FC)5种,其中系统块是在CPU操作系统中预先定义好的功能和功能块,这些块不占用用户程序空间。

在下节争辩位指令前先争辩一下SIEMENS的模块地址:

在不带DP口的S7-300和不组态的S7-400接受固定槽位编址,使用带DP口的S7-300和S7-400,可以安排模块的起始地址。

但要留意,由于CPU存储器复位后,参数和地址会丢失,这就意味着全部地址都回到和槽位有关的地址或是缺省地址。

我们还是以S7-300为例,在S7-300中,机架上的插槽号简化了模块地址,模块的第一个地址由机架上的模块地址打算。

一般槽1给电源,槽2是CPU,槽3为IM(接口模板)所用,4~11为I/O卡、CP卡和FM卡。

他们的固定地址就是为每个槽位保留4个字节——就是说,槽4(第一块I/O卡),地址为0.0~3.7(共32位),槽5(其次块I/O卡)地址为4.0~7.7,假设第一卡是DI,那么他们的地址就是I0.0、I0.1、、、I3.7,若其次卡为DO卡,地址为Q4.0、Q4.1、、、、Q7.7,请留意,当使用16通道的DI/DO模块时,每个槽位就会失去两个字节(16位)。

基本规律指令

与(FBD)A(STL)(AND指令)

或=1(FBD)O(STL)(OR指令)

异或XOR(FBD)X(STL)(XOR指令)

留意:

异或操作是指:

当两个信号中仅有一个满足时,输出状态才是“1”,这个指令不能使用于多个地址的异或规律操作(N个中有一个1时才是1),所以三个及三个以上的异或指令,旧的RLO(规律操作结果)和另一个输入作异或运算。

赋值语句=

置位S光是置位,始终保持到它被另一个指令复位为止。

复位R光是复位,始终保持到它被另一个指令置位为止。

触发器的置位复位:

同时有置位输入和复位输入,假如两个输入端同时消灭RLO=1,依据优先级。

在LAD/FBD中,分别有置位优先和复位优先的不同符号,在STL中,最终编写的指令具有高优先权。

留意:

假如用置位命令把输出置位,当CPU全启动时它被复位,但假如声明保持,则当CPU全启动时,它就始终保持置位状态。

连接器:

M0.0(#),为中间赋值元件,它把当前RLO保存到指定地址,当它和其他元件串联时,连接器指令和触点一样插入。

留意连接器不能:

直接连接到电源母线

直接跟一个分支;

用在分支末尾。

但连接器可以用“NOT”元件对它进行取反操作。

影响RLO的指令:

NOT=取反;CLR=复位(仅用在STL中);SET=置位(仅用在STL中);SAVE=把RLO保存到状态寄存器中的“BR”;BR=用来重新检查保存的RLO。

主控继电器功能MCR:

是一个用来接通或断开电流的规律主开关。

假如MCR条件不满足:

0安排给输出线圈,置位线圈和复位线圈指令不转变当前值,MOVE指令把0传到目的地址。

MCRA指令启动主控继电器功能/MCRD指令取消MCR功能,直到另一个MCRA指令起作用。

无条件转移(不依靠于RLO)JMP

在LAD/FBD中,在线圈符号上面输入作为表示的标号或符号,如NEW1,NEW2等,标号最多有4个字符,第一个字符必需使用字母或“_”。

跳转规章:

可以向前或向后跳转,跳转指令和跳转目的必需在同一个块中(最大跳转长度为64K字节);在一个块中跳转目的只能消灭一次;跳转指令可以用在FB、FC和OB中。

条件跳转:

有两个:

JC——当RLO=1时,JC才执行,当RLO=0时,不跳转,连续执行下面的程序,但置RLO=1。

JCN——当RLO=0时,JCN才执行,当RLO=1时,不跳转。

边沿检测:

RLO-边沿检测和信号-边沿检测。

RLO-边沿检测:

当规律操作结果变化时,产生RLO边沿。

检测正边沿FP——RLO从“0”变化到“1”,“FP”检查指令产生一个“扫描周期”的信号“1”;检测负边沿FN,则RLO从“1”变化到“0”,“FN”检查指令产生一个“扫描周期”的信号“1”。

上述两个结果保存在“FP(FN)”位存储器中或数据位中,如M1.0…,同时,可以输出在其他线圈。

信号-边沿检测:

同上面的RLO指令类似,当信号变化时,产生信号边沿,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 自然科学 > 天文地理

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2