计算机二级公共基础知识总结.docx

上传人:b****8 文档编号:9323255 上传时间:2023-05-18 格式:DOCX 页数:27 大小:485.93KB
下载 相关 举报
计算机二级公共基础知识总结.docx_第1页
第1页 / 共27页
计算机二级公共基础知识总结.docx_第2页
第2页 / 共27页
计算机二级公共基础知识总结.docx_第3页
第3页 / 共27页
计算机二级公共基础知识总结.docx_第4页
第4页 / 共27页
计算机二级公共基础知识总结.docx_第5页
第5页 / 共27页
计算机二级公共基础知识总结.docx_第6页
第6页 / 共27页
计算机二级公共基础知识总结.docx_第7页
第7页 / 共27页
计算机二级公共基础知识总结.docx_第8页
第8页 / 共27页
计算机二级公共基础知识总结.docx_第9页
第9页 / 共27页
计算机二级公共基础知识总结.docx_第10页
第10页 / 共27页
计算机二级公共基础知识总结.docx_第11页
第11页 / 共27页
计算机二级公共基础知识总结.docx_第12页
第12页 / 共27页
计算机二级公共基础知识总结.docx_第13页
第13页 / 共27页
计算机二级公共基础知识总结.docx_第14页
第14页 / 共27页
计算机二级公共基础知识总结.docx_第15页
第15页 / 共27页
计算机二级公共基础知识总结.docx_第16页
第16页 / 共27页
计算机二级公共基础知识总结.docx_第17页
第17页 / 共27页
计算机二级公共基础知识总结.docx_第18页
第18页 / 共27页
计算机二级公共基础知识总结.docx_第19页
第19页 / 共27页
计算机二级公共基础知识总结.docx_第20页
第20页 / 共27页
亲,该文档总共27页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

计算机二级公共基础知识总结.docx

《计算机二级公共基础知识总结.docx》由会员分享,可在线阅读,更多相关《计算机二级公共基础知识总结.docx(27页珍藏版)》请在冰点文库上搜索。

计算机二级公共基础知识总结.docx

计算机二级公共基础知识总结

 

计算机二级公共基础知识总结-

第1章数据结构与算法

算法的复杂度

1.算法的基本概念

1、算法是指解题方案的准确而完整的描述。

换句话说,算法是对特定问题求解步骤的一种描述。

*算法不等于程序,也不等计算机方法,程序的编制不可能优于算法的设计。

(1)算法的基本特征

算法一般具有4个基本特征:

可行性、确定性、有穷性、拥有足够的情报。

注:

&确定性,算法中每一步骤都必须有明确定义,不充许有模棱两可的解释,不允许有多义性;

&有穷性,算法必须能在有限的时间内做完,即能在执行有限个步骤后终止,包括合理的执行时

间的含义;

*算法的基本要素:

一是对数据对象的运算和操作;二是算法的控制结构。

(2)*算法的基本运算和操作包括:

算术运算、逻辑运算、关系运算、数据传输。

(3)*算法的3种基本控制结构是:

顺序结构、选择结构、循环结构。

(4)算法基本设计方法:

列举法、归纳法、递推、递归、减半递推技术、回溯法。

(5)指令系统:

指的是一个计算机系统能执行的所有指令的集合。

2.算法复杂度

*算法复杂度包括时间复杂度和空间复杂度。

注意两者的区别,无混淆,见表1-1。

可以用执行算法的过程中所需基本运算的执行次数来度量。

表1-1算法复杂性★★★

名称

描述

时间复杂度

执行算法所需要的计算工作量

空间复杂度

执行这个算法所需要的内存空间

数据结构

逻辑结构和存储结构

1.数据结构的基本概念

(1)*数据结构:

指相互有关联的数据元素的集合。

(2)数据结构研究的三个方面:

Ⅰ、数据集合中各数据元素之间所固有的逻辑关系,即数据的逻辑结构;

Ⅱ、在对数据进行处理时,各数据元素在计算机中的存储关系,即数据的存储结构;

Ⅲ、对各种数据结构进行的运算。

2.逻辑结构

数据的逻辑结构是对数据元素之间的逻辑关系的描述。

数据的逻辑结构有两个要素:

一是数据元素的集合,通常记为D;二是D上的关系,它反映了数据元素之间的前后件关系,通常记为R。

一个数据结构可以表示成:

B=(D,R)

3.存储结构

数据的存储结构有顺序、链接、索引等。

注:

顺序存储方式主要用于线性的数据结构,它把逻辑上相邻的数据元素存储在物理上相邻的存储单元里,结点之间的关系由存储单元的邻接关系来体现。

链式存储结构就是在每个结点中至少包含一个指针域,用指针来体现数据元素之间逻辑上的联系。

*:

数据的逻辑结构反映数据元素之间的逻辑关系,数据的存储结构(也称数据的物理结构)是数据的逻辑结构在计算机存储空间中的存放形式。

同一种逻辑结构的数据可以采用不同的存储结构,但影响数据处理效率。

线性结构和非线性结构

根据数据结构中各数据元素之间前后件关系的复杂程度,一般将数据结构分为两大类型:

线性结构与非线性结构。

(1)如果一个非空的数据结构满足下列两个条件:

*①有且只有一个根结点;

②每一个结点最多有一个前件,也最多有一个后件。

则称该数据结构为线性结构。

线性结构又称线性表。

在一个线性结构中插入或删除任何一个结点后还应是线性结构。

栈、队列、串、线性链表等都为线性结构。

如果一个数据结构不是线性结构,则称之为非线性结构。

数组、广义表、树和图等数据结构都是非线性结构。

线性表及其顺序存储结构

线性表的存储结构主要分为顺序存储结构和链式存储结构

线性表是由一组数据元素构成,数据元素的位置只取决于自己的序号,元素之间的相对位置是线性的。

在复杂线性表中,由若干项数据元素组成的数据元素称为记录,而由多个记录构成的线性表又称为文件。

非空线性表的结构特征:

(1)且只有一个根结点a1,它无前件;

(2)有且只有一个终端结点an,它无后件;

(3)除根结点与终端结点外,其他所有结点有且只有一个前件,也有且只有一个后件。

结点个数n称为线性表的长度,当n=0时,称为空表。

*线性表的顺序存储结构具有以下两个基本特点:

(1)线性表中所有元素的所占的存储空间是连续的;

(2)线性表中各数据元素在存储空间中是按逻辑顺序依次存放的。

ai的存储地址为:

ADR(ai)=ADR(a1)+(i-1)k,,ADR(a1)为第一个元素的地址,k代表每个元素占的字节数。

顺序表的运算:

查找、插入、删除3种。

栈(重点)

1.栈的基本概念(栈(stack)是一种特殊的线性表)

栈是限定在一端进行插入与删除运算的线性表。

在栈中,允许插入与删除的一端称为栈顶,不允许插入与删除的另一端称为栈底。

栈顶元素总是最后被插入的元素,栈底元素总是最先被插入的元素。

即栈是按照“先进后出”(FILO)或“后进先出”(LIFO)的原则组织数据的。

栈具有记忆作用。

注:

用top表示栈顶位置,用bottom表示栈底。

当表中没有元素时称为空栈

2.栈的基本运算:

(1)插入元素称为入栈运算;

(2)删除元素称为退栈运算;(3)读栈顶元素是将栈顶元素赋给一个指定的变量,此时指针无变化。

计算栈的个数:

栈底–栈顶+1

队列(重点)

1.队列的基本概念

队列是指允许在一端(队尾)进入插入,而在另一端(队头)进行删除的线性表。

Rear指针指向队尾,front指针指向队头。

队列是“先进先出”(FIFO)或“后进后出”(LILO)的线性表。

2.队列运算

入队运算是往队列队尾插入一个数据元素;退队运算是从队列的队头删除一个数据元素。

队列的顺序存储结构一般采用队列循环的形式。

循环队列s=0表示队列空;s=1且front=rear表示队列满。

计算循环队列的元素个数:

“尾指针减头指针”,若为负数,再加其容量即可。

队列是一种特殊的线性表,循环队列是队列的顺序存储结构。

链表

数据结构中的每一个结点对应于一个存储单元,这种存储单元称为存储结点,简称结点。

结点由两部分组成:

(1)用于存储数据元素值,称为数据域;

(2)用于存放指针,称为指针域,用于指向前一个或后一个结点。

在链式存储结构中,存储数据结构的存储空间可以不连续,各数据结点的存储顺序与数据元素之间的逻辑关系可以不一致,而数据元素之间的逻辑关系是由指针域来确定的。

链式存储方式即可用于表示线性结构,也可用于表示非线性结构。

线性链表,HEAD称为头指针,HEAD=NULL(或0)称为空表,如果是两指针:

左指针(Llink)指向前件结点,右指针(Rlink)指向后件结点。

线性链表的基本运算:

查找、插入、删除。

树与二叉树★★★★★

1、树的基本概念

树是一种简单的非线性结构,所有元素之间具有明显的层次特性。

在树结构中,每一个结点只有一个前件,称为父结点,没有前件的结点只有一个,称为树的根结点,简称树的根。

每一个结点可以有多个后件,称为该结点的子结点。

没有后件的结点称为叶子结点。

在树结构中,一个结点所拥有的后件的个数称为该结点的度,所有结点中最大的度称为树的度。

树的最大层次称为树的深度。

2、二叉树及其基本性质

二叉树是一种很有用的非线性结构,具有以下两个特点:

(1)非空二叉树只有一个根结点;

(2)每一个结点最多有两棵子树,且分别称为该结点的左子树与右子树。

基本性质:

性质1在二叉树的第k层上,最多有

个结点。

  性质2深度为m的二叉树最多有个

个结点。

  性质3在任意一棵二叉树中,度数为0的结点(即叶子结点)总比度为2的结点多一个。

  性质4具有n个结点的二叉树,其深度至少为

,其中

表示取

的整数部分

3.满二叉树与完全二叉树

满二叉树:

除最后一层外,每一层上的所有结点都有两个子结点。

完全二叉树:

除最后一层外,每一层上的结点数均达到最大值;在最后一层上只缺少右边的若干结点。

注意:

深度为m的满二叉树最多有个

个结点

完全二叉树具有以下两个性质:

性质1:

具有n个结点的完全二叉树的深度为

性质2:

设完全二叉树共有n个结点。

如果从根结点开始,按层次(每一层从左到右)用自然数1,2,……,n给结点进行编号,则对于编号为k(k=1,2,……,n)的结点有以下结论:

①若k=1,则该结点为根结点,它没有父结点;若k>1,则该结点的父结点编号为INT(k/2);

②若2k≤n,则编号为k的结点的左子结点编号为2k;否则该结点无左子结点(显然也没有右子结点);

③若2k+1≤n,则编号为k的结点的右子结点编号为2k+1;否则该结点无右子结点。

二叉树存储结构采用链式存储结构,对于满二叉树与完全二叉树可以按层序进行顺序存储

4、二叉树的遍历★★★★

二叉树的遍历是指不重复地访问二叉树中的所有结点。

二叉树的遍历可以分为以下三种

(1)前序遍历(DLR):

若二叉树为空,则结束返回。

否则:

首先访问根结点,然后遍历左子树,最后遍历右子树;并且,在遍历左右子树时,仍然先访问根结点,然后遍历左子树,最后遍历右子树。

(2)中序遍历(LDR):

若二叉树为空,则结束返回。

否则:

首先遍历左子树,然后访问根结点,最后遍历右子树;并且,在遍历左、右子树时,仍然先遍历左子树,然后访问根结点,最后遍历右子树。

(3)后序遍历(LRD):

若二叉树为空,则结束返回。

否则:

首先遍历左子树,然后遍历右子树,最后访问根结点,并且,在遍历左、右子树时,仍然先遍历左子树,然后遍历右子树,最后访问根结点.

查找技术

查找:

根据给定的某个值,在查找表中确定一个其关键字等于给定值的数据元素。

查找成功/查找失败

在下列两种情况下也只能采用顺序查找:

①如果线性表为无序表,则不管是顺序存储结构还是链式存储结构,只能用顺序查找;

②即使是有序线性表,如果采用链式存储结构,也只能用顺序查找。

查找分为:

顺序查找二分法查找

二分法查找只适用于顺序存储的有序表(能使用二分法查找的线性表必须满足用顺序存储结构和线性表是有序表两个条件。

)对于长度为n的有序线性表,最坏情况只需比较

次,而顺序查找需要比较n次。

注:

“有序”是特指元素按非递减排列,即从小到大排列,但允许相邻元素相等。

下一节排序中,有序的含义也是如此

排序技术

排序是指将一个无序序列整理成按值非递减顺序排列的有序序列。

1、交换类排序法(冒泡排序,快速排序)

2、插入类排序法(简单插入排序,希尔排序)

3、选择类排序法(简单选择排序,堆排序)

冒泡排序法,快速排序法,简单插入排序法,简单选择排序法,最坏需要比较的次数为n(n-1)/2

希尔排序,最坏需要比较的次数为

堆排序,最坏需要比较的次数为

相比以上几种(除希尔排序法外),堆排序法的时间复杂度最小。

(本章应考点拨:

本章内容在笔试中会出现5-6个题目,是公共基础知识部分出题量比较多的一章,所占分值也比较大,约10分。

第2章程序设计基础

程序设计的方法与风格

"清晰第一、效率第二"已成为当今主导的程序设计风格。

形成良好的程序设计风格需注意:

  1、源程序文档化;

  2、数据说明的方法;

  3、语句的结构;

  4、输入和输出。

  注释分序言性注释和功能性注释。

语句结构清晰第一、效率第二。

结构化程序设计

1、结构化程序设计方法的四条原则是:

1.自顶向下;2.逐步求精;3.模块化;4.限制使用goto语句。

2、结构化程序的基本结构及特点:

  

(1)顺序结构:

一种简单的程序设计,最基本、最常用的结构;

  

(2)选择结构:

又称分支结构,包括简单选择和多分支选择结构,可根据条件,判断应该选择哪一条分支来执行相应的语句序列;

  (3)循环结构:

又称重复结构,可根据给定条件,判断是否需要重复执行某一相同或类似的程序段。

  结构化程序设计的特点:

只有一个入口和出口

面向对象方法

面向对象的程序设计:

以60年代末挪威奥斯陆大学和挪威计算机中心研制的SIMULA语言为标志。

面向对象方法的优点:

(1)与人类习惯的思维方法一致;

(2)稳定性好;(3)可重用性好;(4)易于开发大型软件产品;

(5)可维护性好。

*:

面向对象的程序设计主要考虑的是提高软件的可重用性。

对象是属性和方法的封装体。

*:

一个对象由对象名、属性和操作三部分组成。

面向对象的基本特点:

继承性,多态性,封装性

*:

信息隐蔽是通过对象的封装性来实现的。

对象是面向对象方法中最基本的概念,可以用来表示客观世界中的任何实体,对象是实体的抽象。

面向对象的程序设计方法中的对象是系统中用来描述客观事物的一个实体,是构成系统的一个基本单位

由一组表示其静态特征的属性和它可执行的一组操作组成。

属性即对象所包含的信息,操作描述了对象执行的功能,是对象的动态属性,操作也称为方法或服务。

对象的基本特点:

(1)标识惟一性;

(2)分类性;(3)多态性;(4)封装性;(5)模块独立性好。

类是指具有共同属性、共同方法的对象的集合。

所以类是对象的抽象,对象是对应类的一个实例。

消息是一个实例与另一个实例之间传递的信息。

对象间的通信靠消息传递。

它请求对象执行某一处理

回答某一要求的信息,它统一了数据流和控制流

消息是一个实例与另一个实例之间传递的信息。

消息的组成包括

(1)接收消息的对象的名称;

(2)消息标识符,也称消息名;(3)零个或多个参数。

继承是指能够直接获得已有的性质和特征,而不必重复定义他们。

继承分单继承和多重继承。

单继承指一个类只允许有一个父类,多重继承指一个类允许有多个父类。

多态性是指同样的消息被不同的对象接受时可导致完全不同的行动的现象

*:

在面向对象方法中,一个对象请求另一个对象为其服务的方式是通过发送消息。

(本章应考点拨:

本章在考试中会出现约1个题目,所占分值大约占2分,是出题量较小的一章。

本章内容比较少,也很

单,掌握住基本的概念就可以轻松应对考试了,所以在这部分丢分,比较可惜。

第3章软件工程基础

软件工程基本概念

1.软件定义与软件特点

软件指的是计算机系统中与硬件相互依存的另一部分,包括程序、数据和相关文档的完整集合。

根据应用目标的不同,软件可分应用软件、系统软件和支撑软件(或工具软件)

软件的特点包括:

(1)软件是一种逻辑实体;

(2)软件的生产与硬件不同,它没有明显的制作过程

(3)软件在运行、使用期间不存在磨损、老化问题;(4)软件的开发、运行对计算机系统具有依赖

性,受计算机系统的限制,这导致了软件移植的问题;(5)软件复杂性高,成本昂贵;(6)软件开发

涉及诸多的社会因素。

2.软件工程

软件工程源自软件危机。

所谓软件危机是泛指在计算机软件的开发和维护过程中所遇到的一系列严重问题

软件工程的主要思想是将工程化原则运用到软件开发过程,它包括3个要素:

方法、工具和过程。

方法

完成软件工程项目的技术手段;工具是支持软件的开发、管理、文档生成;过程支持软件开发的各个环

的控制、管理。

软件工程过程是把输入转化为输出的一组彼此相关的资源和活动。

包含4种基本活动:

(1)P——软件

规格说明;

(2)D——软件开发;(3)C——软件确认;(4)A——软件演进。

软件生命周期

1、软件生命周期:

软件产品从提出、实现、使用维护到停止使用退役的过程。

2、软件生命周期分为软件定义、软件开发及软件运行维护三个阶段:

1)软件定义阶段:

包括制定计划和需求分析。

制定计划:

确定总目标;可行性研究;探讨解决方案;制定开发计划。

需求分析:

对待开发软件提出的需求进行分析并给出详细的定义。

软件需求规格说明书

2)软件开发阶段:

软件设计:

分为概要设计和详细设计两个部分。

软件实现:

把软件设计转换成计算机可以接受的程序代码。

软件测试:

在设计测试用例的基础上检验软件的各个组成部分。

3)软件运行维护阶段:

软件投入运行,并在使用中不断地维护,进行必要的扩充和删改。

*:

软件生命周期中所花费最多的阶段是软件运行维护阶段

3、

(1)软件工程目标:

在给定成本、进度的前提下,开发出具有有效性、可靠性、可理解性、

可维护性、可重用性、可适应性、可移植性、可追踪性和可互操作性且满足用户需求的产品。

(2)软件工程需要达到的基本目标应是:

付出较低的开发成本;达到要求的软件功能;取得较好的软件

性能;开发的软件易于移植;需要较低的维护费用;能按时完成开发,及时交付使用。

(3)软件工程原则:

抽象、信息隐蔽、模块化、局部化、确定性、一致性、完备性和可验证性。

结构化分析方法

1、需求分析方法有:

1)结构化需求分析方法;2)面向对象的分析方法。

从需求分析建立的模型的特性来分:

静态分析和动态分析。

2、结构化分析方法是结构化程序设计理论在软件需求分析阶段的应用。

结构化分析方法的实质:

着眼于数据流,自顶向下,逐层分解,建立系统的处理流程,以数据流图和数据字典为主要工具,建立系统的逻辑模型。

结构化分析的常用工具:

1)数据流图(DFD);2)数据字典(DD);3)判定树;4)判定表。

数据流图的基本图形元素:

加工(转换):

输入数据经加工变换产生输出。

  数据流:

沿箭头方向传送数据的通道,一般在旁边标注数据流名。

  存储文件(数据源):

表示处理过程中存放各种数据的文件。

  源,潭:

表示系统和环境的接口,属系统之外的实体。

(1)数据流图(DFD)是分析员与用户之间极好的通信工具。

(2)数据字典(DD)是对数据流图中所有元素的定义的集合,是结构化分析的核心。

*:

数据字典的作用是对数据流图中出现的被命名的图形元素的确切解释。

数据字典中有4种类型的条目:

数据流、数据项、数据存储和加工。

3、软件需求规格说明书是需求分析阶段的最后成果,是软件开发的重要文档之一。

它的特点是具有正确性、无歧义性、完整性、可验证性、一致性、可理解性、可修改性和可追踪性。

结构化设计方法

1、软件设计的基础

软件设计的基本目标是用比较抽象概括的方式确定目标系统如何完成预定的任务,软件设计是确定系统的物理模型。

软件设计是开发阶段最重要的步骤,是将需求准确地转化为完整的软件产品或系统的唯一途径。

从技术观点来看,软件设计包括软件结构设计、数据设计、接口设计、过程设计。

从工程角度来看,软件设计分两步完成,即概要设计和详细设计。

概要设计又称结构设计,将软件需求转化为软件体系结构,确定系统级接口、全局数据结构或数据库模式。

详细设计:

确定每个模块的实现算法和局部数据结构,用适当方法表示算法和数据结构的细节。

软件设计的一般过程:

软件设计是一个迭代的过程;先进行高层次的结构设计;后进行低层次的过程设计;穿插进行数据设计和接口设计。

软件设计的基本原理包括:

抽象、模块化、信息隐蔽和模块独立性。

*:

模块分解的主要指导思想是信息隐蔽和模块独立性。

模块的耦合性和内聚性是衡量软件的模块独立性的两个定性指标。

内聚性:

是一个模块内部各个元素间彼此结合的紧密程度的度量。

*:

按内聚性由弱到强排列,内聚可以分为以下几种:

偶然内聚、逻辑内聚、时间内聚、过程内聚、通信内聚、顺序内聚及功能内聚。

耦合性:

是模块间互相连接的紧密程度的度量。

*:

按耦合性由高到低排列,耦合可以分为以下几种:

内容耦合、公共耦合、外部耦合、控制耦合、标记耦合、数据耦合以及非直接耦合。

一个设计良好的软件系统应具有高内聚、低耦合的特征。

在结构化程序设计中,模块划分的原则是:

模块内具有高内聚度,模块间具有低耦合度。

2、总体设计(概要设计)和详细设计

(1)总体设计(概要设计)

软件概要设计的基本任务是:

1)设计软件系统结构;2)数据结构及数据库设计;3)编写概要设计文档;4)概要设计文档评审。

常用的软件结构设计工具是结构图,也称程序结构图。

程序结构图的基本图符:

模块用一个矩形表示,箭头表示模块间的调用关系。

在结构图中还可以用带注释的箭头表示模块调用过程中来回传递的信息。

还可用带实心圆的箭头表示传递的是控制信息,空心圆箭心表示传递的是数据信息。

结构图的基本形式:

基本形式、顺序形式、重复形式、选择形式。

结构图有四种模块类型:

传入模块、传出模块、变换模块和协调模块。

典型的数据流类型有两种:

变换型和事务型。

变换型系统结构图由输入、中心变换、输出三部分组成。

(2)详细设计

详细设计是为软件结构图中的每一个模块确定实现算法和局部数据结构,用某种选定的表达工具表示算法和数据结构的细节。

常用的过程设计(即详细设计)工具有以下几种:

1、图形工具:

程序流程图、N-S(方盒图)、PAD(问题分析图)和HIPO(层次图+输入/处理/输出图)。

程序流程图中主要元素:

1)方框:

表示一个处理步骤2)菱形框:

表示一个逻辑条件3)箭头:

表示控制流向

2、表格工具:

判定表。

3、语言工具:

PDL(伪码)

软件测试

1、软件测试定义:

使用人工或自动手段来运行或测定某个系统的过程,其目的在于检验它是否满足规定的需求或是弄清预期结果与实际结果之间的差别。

软件测试的目的:

尽可能地多发现程序中的错误,不能也不可能证明程序没有错误。

软件测试的关键是设计测试用例,一个好的测试用例能找到迄今为止尚未发现的错误。

2、软件测试方法:

静态测试和动态测试。

静态测试:

包括代码检查、静态结构分析、代码质量度量。

不实际运行软件,主要通过人工进行。

动态测试:

是基于计算机的测试,主要包括白盒测试方法和黑盒测试方法。

(1)白盒测试

白盒测试方法也称为结构测试或逻辑驱动测试。

它是根据软件产品的内部工作过程,检查内部成分,以确认每种内部操作符合设计规格要求。

白盒测试的基本原则:

保证所测模块中每一独立路径至少执行一次;保证所测模块所有判断的每一分支至少执行一次;保证所测模块每一循环都在边界条件和一般条件下至少各执行一次;验证所有内部数据结构的有效性。

*:

白盒测试法的测试用例是根据程序的内部逻辑来设计的,主要用软件的单元测试,主要方法有逻辑覆盖、基本路径测试等。

A、逻辑覆盖。

逻辑覆盖泛指一系列以程序内部的逻辑结构为基础的测试用例设计技术。

通常程序中的逻辑表示有判断、分支、条件等几种表示方法。

语句覆盖:

选择足够的测试用例,使得程序中每一个语句至少都能被执行一次。

路径覆盖:

执行足够的测试用例,使程序中所有的可能的路径都至少经历一次。

判定覆盖:

使设计的测试用例保证程序中每个判断的每个取值分支(T或F)至少经历一次。

条件覆盖:

设计的测试用例保证程序中每个判断的每个条件的可能取值至少执行一次。

判断-条件覆盖:

设计足够的测试用例,使判断中每个条件的所有可能取值至少执行一次,同时每个判断的所有可能取值分支至少执行一次。

*:

逻辑覆盖的强度依次是:

语句覆盖<路径覆盖<判定覆盖<条件覆盖<判断-条件覆盖。

B、基本路径测试。

其思想和步骤是,根据软件过程性描述中的控制流程确定程序的环路复杂性度量,用此度量定义基本路径集合,并由此导出一组测试用例,对每一条独立执行路径进行测试。

(2)黑盒测试

黑盒测试方法也称为功能测试或数据驱动测试。

黑盒测试是对软件已经实现的功能是否满足需求进行测试和验证。

黑盒测试主要诊断功能不对或遗漏、接口错误、数据结构或外部数据库访问错误、性能错误、初始化和终止条件错误。

黑盒测试不关心程序内部的逻辑,只是根据程序的功能说明来设计测试用例,主要方法有等价类划分法、边界值分析法、错误推测法等,主要用软件的确认测试。

3、软件测试过程一般按4个步骤进行:

单元测试、集成测试、确认测试和系统测试  

程序的调试

程序调试的任务是诊断和改正程序中的错误,主要在开发阶段进行,调试程序应该由编制源程序的程序员

来完成。

程序调试的基本步骤:

(1)错误定位;

(2)修改设计和代码,以排除错误;(3)进行回

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 经管营销 > 经济市场

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2