超声波测距仪.docx

上传人:b****8 文档编号:9403189 上传时间:2023-05-18 格式:DOCX 页数:26 大小:256KB
下载 相关 举报
超声波测距仪.docx_第1页
第1页 / 共26页
超声波测距仪.docx_第2页
第2页 / 共26页
超声波测距仪.docx_第3页
第3页 / 共26页
超声波测距仪.docx_第4页
第4页 / 共26页
超声波测距仪.docx_第5页
第5页 / 共26页
超声波测距仪.docx_第6页
第6页 / 共26页
超声波测距仪.docx_第7页
第7页 / 共26页
超声波测距仪.docx_第8页
第8页 / 共26页
超声波测距仪.docx_第9页
第9页 / 共26页
超声波测距仪.docx_第10页
第10页 / 共26页
超声波测距仪.docx_第11页
第11页 / 共26页
超声波测距仪.docx_第12页
第12页 / 共26页
超声波测距仪.docx_第13页
第13页 / 共26页
超声波测距仪.docx_第14页
第14页 / 共26页
超声波测距仪.docx_第15页
第15页 / 共26页
超声波测距仪.docx_第16页
第16页 / 共26页
超声波测距仪.docx_第17页
第17页 / 共26页
超声波测距仪.docx_第18页
第18页 / 共26页
超声波测距仪.docx_第19页
第19页 / 共26页
超声波测距仪.docx_第20页
第20页 / 共26页
亲,该文档总共26页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

超声波测距仪.docx

《超声波测距仪.docx》由会员分享,可在线阅读,更多相关《超声波测距仪.docx(26页珍藏版)》请在冰点文库上搜索。

超声波测距仪.docx

超声波测距仪

毕业设计(论文)

 

题  目:

 超声波测距仪     

 

摘要

超声波具有指向性强,能量消耗缓慢,传播距离较远等优点,所以,在利用传感器技术和自动控制技术相结合的测距方案中,超声波测距是目前应用最普遍的一种,它广泛应用于防盗、倒车雷达、水位测量、建筑施工工地以及一些工业现场。

本课题详细介绍了超声波传感器的原理和特性,以及Atmel公司的AT89C51单片机的性能和特点,并在分析了超声波测距的原理的基础上,指出了设计测距系统的思路和所需考虑的问题,给出了以AT89C51单片机为核心的低成本、高精度、微型化数字显示超声波测距仪的硬件电路和软件设计方法。

该系统电路设计合理、工作稳定、性能良好、检测速度快、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求。

 

关键词:

超声波单片机测距AT89C51

目  录

摘要1

Abstract2

目  录3

第1章超声波测距系统设计5

1.1超声波测距的原理5

1.2超声波测距系统电路的设计5

1.2.1总体设计方案5

1.2.2发射电路的设计6

1.2.3接收电路的设计7

1.2.4显示模块的设计8

1.3超声波测距系统的软件设计9

1.4本章小结11

第2章绪论12

2.1课题背景,目的和意义12

2.2两种常用的超声波测距方案12

2.2.1基于单片机的超声波测距系统12

2.2.2基于CPLD的超声波测距系统13

2.3课题主要内容14

第3章超声波传感器15

3.1超声波传感器的原理与特性15

3.1.1原理15

3.1.2特性16

3.2超声波传感器的检测方式17

3.3超声波传感器系统的构成18

3.4本章小结19

第4章AT89C51单片机简介20

4.1单片机基础知识20

4.1.1单片机的内部结构20

4.1.2单片机的基本工作原理22

4.2单片机的分类及发展23

4.3单片机AT89C51的特性24

4.4本章小结27

第5章电路调试及误差分析28

5.1电路的调试28

5.2系统的误差分析28

5.2.1声速引起的误差28

5.2.2单片机时间分辨率的影响29

5.4本章小结30

结论31

致谢32

参考文献33

附录134

附录239

附录340

第1章超声波测距系统设计

1.1超声波测距的原理

单片机发出超声波测距是通过不断检测超声波发射后遇到障碍物所反射的回波,从而测出发射和接收回波的时间差t,然后求出距离

(1-1)

式(1-1)中的c为超声波在空气中传播的速度。

限制该系统的最大可测距离存在四个因素:

超声波的幅度、反射物的质地、反射和入射声波之间的夹角以及接收换能器的灵敏度。

接收换能器对声波脉冲的直接接收能力将决定最小可测距离。

为了增加所测量的覆盖范围,减少测量误差,可采用多个超声波换能器分别作为多路超声波发射/接收的设计方法。

由于超声波发球声波范围,其波速c与温度有关,表1-1列出了几种不同温度下的波速。

表1-1声速与温度的关系

温度(℃)

-30

-20

-10

0

10

20

30

100

声速(m/s)

313

319

325

323

338

344

349

386

波速确定后,只要测得超声波往返的时间t,即可求得距离S。

其系统原理框图如图1-1所示。

图1-1超声波测距系统框图

单片机AT89C51发出短暂的40kHz信号,经放大后通过超声波换能器输出;反射后的超声波经超声波换能器作为系统的输入,锁相环对此信号锁定,产生锁定信号启动单片机中断程序,读出时间t,再由系统软件对其进行计算、判别后,相应的计算结果被送至LED数码管进行显示。

在下一节里,我们将详细介绍超声波测距仪的各部分电路的设计思路及方法。

1.2两种常用的超声波测距方案

2.2.1基于单片机的超声波测距系统

基于单片机的超声波测距系统,是利用单片机编程产生频率为40kHz的方波,经过发射驱动电路放大,使超声波传感器发射端震荡,发射超声波。

超声波波经反射物反射回来后,由传感器接收端接收,再经接收电路放大、整形,控制单片机中断口。

其系统框图如图2-1所示。

图2-1基于单片机的超声波测距系统框图

这种以单片机为核心的超声波测距系统通过单片机记录超声波发射的时间和收到反射波的时间。

当收到超声波的反射波时,接收电路输出端产生一个负跳变,在单片机的外部中断源输入口产生一个中断请求信号,单片机响应外部中断请求,执行外部中断服务子程序,读取时间差,计算距离,结果输出给LED显示[1]。

利用单片机准确计时,测距精度高,而且单片机控制方便,计算简单。

许多超声波测距系统都采用这种设计方法。

2.2.2基于CPLD的超声波测距系统

这种测距系统采用CPLD(ComplexProgrammableLogicDevice)器件,运用VHDL(VeryHighSpeedIntegratedCircuitHardwareDescriptionLanguage)编写程序,使用MAX+plusII软件进行软硬件设计的仿真和调试,最终实现测距功能。

CPLD器件内部的宏单元是其最基本的模块,能独立地编程为D触发器、T触发器、RS触发器或JK触发器工作方式或组合逻辑工作方式。

它的这种特性非常适用于本系统,可将本系统所需要的分频功能、计数功能、振荡器、七段码显示全部由MAX来实现,而只需在外部配上适当的超声波传感器、接收和发送电路,即可组成一个测量精度高、性能稳定、响应速度快且具有显示功能的超声波测距仪。

本系统利用CPLD器件控制超声波的发射,并对超声波发射至接收的往返时间进行计数,将计算结果在LED上显示出来。

配合使用MAX+plusII开发软件,可集设计输入、设计处理、设计校验和器件编程于一体,集成度高,开发周期短。

其系统框图如图2-2所示。

图2-2基于CPLD的超声波测距系统框图

超声波发射器向某一方向发射40kHz的超声波,在发射超声波的同时,MAX7128S内的计数器开始计数。

超声波在空气中传播,途中碰到障碍物就会立即返回来。

超声波接收器收到反射波后就将回波信号送到CPLD,CPLD立即停止计数。

CPLD所计的时间就是超声波从传感器到被测物的往返时间。

超声波在空气中的传播速度如设定为332m/s,根据计数器记录的时间t,就可以计算出发射点距障碍物的距离s,即:

s=332t/2。

CPLD开始计数后,只要传感器收到回波,CPLD就立即停止计数,即只有最先返回的超声波才起作用,也就是说超声波测距仪总是测得离传感器最近的物体的距离[2]。

本系统采用先进的CPLD器件,高性能、低成本地实现了距离的测定。

1.2.1总体设计方案

由单片机AT89C51编程产生40kHz的方波,由P3.6口输出,再经过放大电路,驱动超声波发射探头发射超声波。

发射出去的超声波经障碍物反射回来后,由超声波接收头接收到信号,通过接收电路的检波放大、积分整形及一系列处理,送至单片机。

单片机利用声波的传播速度和发射脉冲到接收反射脉冲的时间间隔计算出障碍物的距离,并由单片机控制显示出来。

该测距装置是由超声波传感器、单片机、发射/接收电路和LED显示器组成。

传感器输入端与发射接收电路相连,接收电路输出端与单片机相连接,单片机的输出端与显示电路输入端相连接。

其时序图如图1-2所示。

图1-2时序图

单片机在T0时刻发射方波,同时启动定时器开始计时,当收到回波后,产生一负跳变到单片机中断口,单片机响应中断程序,定时器停止计数。

计算时间差,即可得到超声波在媒介中传播的时间t,由此便可计算出距离。

1.2.2发射电路的设计

由单片机产生的40kHz的方波需要进行放大,才能驱动超声波传感器发射超声波,发射驱动电路其实就是一个信号放大电路,本课题所选用的是74HC04集成芯片,图1-3为发射电路图。

图1-3发射电路

74HC04内部集成了六个反向器,同时具有放大的功能。

74HC04的管脚如图1-4所示。

图1-474HC04管脚图

1.2.3接收电路的设计

超声波接收头接收到超声波后,转换为电信号,此时的信号比较弱,必需经过放大。

本系统采用了LM741对接收到的信号进行放大,接收电路如图1-5所示。

图1-5接收电路

超声波探头接收到超声波后,通过声电转换,产生一正弦信号,其频率为传感器的中心频率,即40kHz。

该信号通过C1高通滤波后经LM741放大,最后经二极管整形后输出到单片机中断口。

LM741是一单运放集成芯片,图1-6为LM741管脚图。

图1-6LM741管脚图

1.2.4显示模块的设计

LED(Light-EmittingDiode,发光二极管)有七段和八段之分,也有共阴和共阳两种。

LED数码管结构简单,价格便宜。

图1-7示出了八段LED数码显示管的结构和原理图。

图1-7(a)为八段共阴数码显示管结构图,图1-7(b)是它的原理图,图1-7(c)为八段共阳LED显示管原理图。

八段LED显示管由八只发光二极管组成,编号是a、b、c、d、e、f、g和SP,分别与同名管脚相连。

七段LED显示管比八段LED少一只发光二极管SP,其他与八段相同。

图1-7八段LED数码显示管原理和结构

单片机对LED管的显示可以分为静态和动态两种。

静态显示的特点是各LED管能稳定地同时显示各自字形;动态显示是指各LED轮流地一遍一遍显示各自字符,人们由于视觉器官惰性,从而看到的是各LED似乎在同时显示不同字形。

为了减少硬件开销,提高系统可靠性并降低成本,单片机控制系统通常采用动态扫描显示。

但是由于本系统所用的单片机引脚少,剩余引脚很多,而且也只需显示三位字符,所以,采用了静态的显示方式,且采用了软件译码,这样单片机引脚输出可直接接到LED显示管上。

这样省去了外部复杂的译码电路。

1.3超声波测距系统的软件设计

单片机编程产生超声波,在系统发射超声波的同时利用定时器的计数功能开始计时,接收到回波后,接收电路输出端产生的负跳变在单片机的外部中断源输入口产生一个中断请求信号,响应外部中断请求,执行外部中断服务子程序,停止计时,读取时间差,计算距离,然后通过软件译码,将数据输出P0、P1和P2口显示。

程序流程图如图1-8,(a)为主程序流程图,(b)为定时中断子程序流程图,(c)为外部中断子程序流程图。

(a)(b)(c)

图1-8程序流程图

用单片机编程产生40kHz方波,可用延时程序和循环语句实现。

先定义一个延时函数delays(),然后可用for语句循环,并且循环一次同时改变方波输出口的电平高低,从而产生方波。

部分程序如下:

voiddelays(){}//延时函数

voidmain()

{

for(a=0;a<200;a++)//产生100个40KHz的方波

{

P36=!

P36;//每循环一次,输出引脚取反

delays();

}

}

单片机每隔一段时间产生一串40kHz方波,同时定时器开始计时,当收到回波,产生中断信号后,单片机执行中断程序。

在中断程序中,先让定时器停止计数,然后读取时间,通过时间计算出所测距离,输出结果。

中断程序如下:

voidintersvro(void)interrupt0using1//INTO中断服务程序

{

uintbwei,shwei,gwei;

ucharDH,DL;

ulongCOUNT;

ulongnum;

TR0=0;//停止计数

DH=TH0;

DL=TL0;

COUNT=TH0*256+TL0;

num=(344*COUNT)/20000;//计算距离

bwei=num/100;//取百位

gwei=(num-bwei*100)/10;//取十位

shwei=num%10;//取个位

P1=tab[bwei];//输出百位

P0=tab[shwei];//输出十位

P2=tab[gwei];//输出个位

TH0=0;

TL0=0;

}

本系统的LED显示采用了静态显示方式,并用单片机内部软件译码。

这样简单方便,省去了复杂的外部译码电路。

软件译码只需要定义一个数组便可,程序语句如下:

uchardatatab[10]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90};

这是共阳LED显示从0到9的字形码。

单片机AT89C51的特性

AT89C系列单片机是Atmel公司生产的一款标准型单片机。

其中数字9表示内含Flash存储器,C表示CMOS工艺。

其管脚图如图4-2所示。

图4-2AT89C单片机管脚图

AT89C51是一种带4K字节闪烁可编程可擦除只读存储器(FPEROM—FalshProgrammableandErasableReadOnlyMemory)的低电压,高性能CMOS8位微处理器,俗称单片机。

AT89C2051是一种带2K字节闪烁可编程可擦除只读存储器的单片机。

单片机的可擦除只读存储器可以反复擦除100次。

该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。

由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,AT89C2051是它的一种精简版本。

AT89C单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。

1.主要特性:

·与MCS-51兼容

·4K字节可编程闪烁存储器

寿命:

100写/擦循环

数据保留时间:

10年

·全静态工作:

0Hz-24Hz

·三级程序存储器锁定

·128×8位内部RAM

·32可编程I/O线

·两个16位定时器/计数器

·5个中断源

·可编程串行通道

·低功耗的闲置和掉电模式

·片内振荡器和时钟电路

2.管脚说明:

VCC:

供电电压。

GND:

接地。

P0口:

P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。

当P1口的管脚第一次写1时,被定义为高阻输入。

P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。

在FIASH编程时,P0口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。

P1口:

P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。

P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。

在FLASH编程和校验时,P1口作为第八位地址接收。

P2口:

P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。

并因此作为输入时,P2口的管脚被外部拉低,将输出电流。

这是由于内部上拉的缘故。

P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。

在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。

P2口在FLASH编程和校验时接收高八位地址信号和控制信号。

P3口:

P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。

当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。

作为输入,由于外部下拉为低电平,P3口将输出电流,这是由于上拉的缘故。

P3口也可作为AT89C51的一些特殊功能口,如下所示:

P3.0RXD(串行输入口)

P3.1TXD(串行输出口)

P3.2/INT0(外部中断0)

P3.3/INT1(外部中断1)

P3.4T0(记时器0外部输入)

P3.5T1(记时器1外部输入)

P3.6/WR(外部数据存储器写选通)

P3.7/RD(外部数据存储器读选通)

P3口同时为闪烁编程和编程校验接收一些控制信号。

RST:

复位输入。

当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。

ALE/PROG:

当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。

在FLASH编程期间,此引脚用于输入编程脉冲。

在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。

因此它可用作对外部输出的脉冲或用于定时目的。

然而要注意的是:

每当用作外部数据存储器时,将跳过一个ALE脉冲。

如想禁止ALE的输出可在SFR8EH地址上置0。

此时,ALE只有在执行MOVX,MOVC指令是ALE才起作用。

另外,该引脚被略微拉高。

如果微处理器在外部执行状态ALE禁止,置位无效。

/PSEN:

外部程序存储器的选通信号。

在由外部程序存储器取指期间,每个机器周期两次/PSEN有效。

但在访问外部数据存储器时,这两次有效的/PSEN信号将不出现。

/EA/VPP:

当/EA保持低电平时,则在此期间外部程序存储器(0000H-FFFFH),不管是否有内部程序存储器。

注意加密方式1时,/EA将内部锁定为RESET;当/EA端保持高电平时,此间内部程序存储器。

在FLASH编程期间,此引脚也用于施加12V编程电源(VPP)。

XTAL1:

反向振荡放大器的输入及内部时钟工作电路的输入。

XTAL2:

来自反向振荡器的输出。

3.振荡器特性:

XTAL1和XTAL2分别为反向放大器的输入和输出。

该反向放大器可以配置为片内振荡器。

石晶振荡和陶瓷振荡均可采用。

如采用外部时钟源驱动器件,XTAL2应不接。

有余输入至内部时钟信号要通过一个二分频触发器,因此对外部时钟信号的脉宽无任何要求,但必须保证脉冲的高低电平要求的宽度。

4.芯片擦除:

整个PEROM阵列和三个锁定位的电擦除可通过正确的控制信号组合,并保持ALE管脚处于低电平10ms来完成。

在芯片擦操作中,代码阵列全被写“1”且在任何非空存储字节被重复编程以前,该操作必须被执行。

此外,AT89C51设有稳态逻辑,可以在低到零频率的条件下静态逻辑,支持两种软件可选的掉电模式。

在闲置模式下,CPU停止工作。

但RAM,定时器,计数器,串口和中断系统仍在工作。

在掉电模式下,保存RAM的内容并且冻结振荡器,禁止所用其他芯片功能,直到下一个硬件复位为止。

5.1电路的调试

通过多次实验,对电路各部分进行了测量、调试和分析。

首先测试发射电路对信号放大的倍数,先用信号源给发射电路输入端一个40kHz的方波信号,峰-峰值为3.8V。

经过发射电路后,其信号峰-峰值放大到10V左右。

40kHz的方波驱动超声波发射头发射超声波,经反射后由超声波接收头接收到40kHz的正弦波,由于声波在空气中传播时衰减,所以接收到的波形幅值较低,经接收电路放大,整形,最后输出一负跳变,在单片机的外部中断源输入端产生一个中断请求信号。

该测距电路的40kHz方波由单片机编程产生,方波的周期为1/40ms,即25µs,半周期为12.5µs。

每隔半周期时间,让方波输出脚的电平取反,便可产生40kHz方波。

由于12M晶振的单片机的时间分辨率是1µs,所以只能产生半周期为12µs或13µs的方波信号,频率分别为41.67kHz和38.46kHz。

本系统在编程时选用了后者,让单片机产生约38.46kHz的方波。

5.2系统的误差分析

5.2.1声速引起的误差

声波是媒质中传播的质点的位置、压强和密度对相应静止值的扰动。

高于20kHz时的机械波称为超声波,媒质包括气体、液体和固体。

流体中的声波常称为压缩波或压强波,对一般流体媒质而言,声波是一种纵波,传播速度为

(5-1)

式(5-1)中E为媒质的弹性模量,单位kg/mm2;ρ为媒质的密度,单位kg/mm3;E为复数,其虚数部分代表损耗;c也是复数,其实数部分代表传播速度,虚数部分则与衰减常数(每单位距离强度或幅度的衰减)有关,测量后者可求得媒质中的损耗。

声波的传播与媒质的弹性模量密度、内耗以及形状大小(产生折射、反射、衍射等)有关。

从式(5-1)可知,声波传输速度与媒介的弹性模量和密度相关,因此,利用声速测量距离,就要考虑这些因素对声速影响。

在气体中,压强、温度、湿度等因素会引起密度变化,气体中声速主要受密度影响,液体的深度、温度等因素会引起密度变化,固体中弹性模量对声速影响较密度影响更大,一般超声波在固体中传播速度最快,液体次之,在气体中的传播速度最慢。

气体中声速受温度的影响最大。

声速受温度的影响为

(5-2)

图5-1根据上式测量的温度-声速图。

图5-1空气中温度-声速图

由式(5-2)和图5-1可见,当温度θ从0~40℃变化时,将会产生7%的声速变化,因此,为了提高测量准确度,计算时必须根据温度进行声速修正。

工业测量中,一般用公式计算超声波在空气中的传播速度,即

(5-3)

5.2.2单片机时间分辨率的影响

不管是查询发射波与回波,还是由其触发单片机中断再通过软件启停定时器,都需要一定的时候,中断的方式误差相对要小一些。

相对而言,单片机的时间分辨率还是不太高,如晶振频率为12MHz时,时间分辨率为1µs。

随机误差

由于测量过程中的随机误差是按统计规律变化的,为了减少其影响,可

在同一位置处多次重复测量xi,然后取平均值x作为测量的真值[10]。

提高测距精度的方法

上节分析了超声波测距系统误差产生的一些原因,如何提高测量精度是超声测距的关键技术。

其提高测距精度的措施如下:

1.合理选择超声波工作频率、脉宽及脉冲发射周期。

据经验,超声测距的工作频率选择40kHz较为合适;发射脉宽一般应大于填充波周期的10倍以上,考虑换能器通频带及抑制噪声的能力,选择发射脉宽1ms;脉冲发射周期的选择主要考虑微机处理数据的速度,速度快,脉冲发射周期可选短些。

2.在超声波接收回路中串入增益调节(AGC)及自动增益负反馈控制环节。

因超声接收波的幅值随传播距离的增大呈指数规律衰减,所以采用AGC电路使放大倍数随测距距离的增大呈指数规律增加的电路,使接收器波形的幅值不随测量距离的变化而大幅度的变化,采用电流负反馈环节能使接收波形更加稳定。

3.提高计时精度,减少时间量化误差。

如采用芯片计时器,计时器的计数频率越高,则时间量化误差造成的测距误差就越小。

例如:

单片机内置计时器的计数频率只有晶振频率的十二分之一,当晶振频率6MHz时,计数频率为0.5MHz,此时在空气中的测距时间量化误差为0.68mm;当晶振频率为12MHz时,计数频率为1MHz,此时测距时间量化误差为0.34mm。

若采用外部硬件计时电路,则计数频率可直接引用单片机的晶振频率,时间量化误差更小[11]。

4.补偿温度对传播声速的影响。

超声波在介质中的传播速度与温度、压力等因数有关,其中温度的影响最大,因此需要对其进行补偿。

温度传感器LM92的温度测试分辨率为0.0625℃,-10℃至+85℃准确度为±1.0℃,I2C总线接口。

用AT89C51的通用I/O端口能很容易的模拟I2C总线的读写时序,LM92高精度温度测量能很好的补偿超声波在不同温度的传播速度。

由LM92温度传感器和单片机组成的高精度超声波测距已应用在各种高精度测距的场合,如自动气象站中水气日蒸发量的测试、自动任意形状物体密度测试仪等,它具有测试速度快,能达到毫米级的测量精度等优点,在工程上的开发与应用前景广阔[12]。

结论

本课题介绍了一种基于

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 农林牧渔 > 林学

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2