温度控制器.docx

上传人:b****0 文档编号:9442905 上传时间:2023-05-19 格式:DOCX 页数:50 大小:984.11KB
下载 相关 举报
温度控制器.docx_第1页
第1页 / 共50页
温度控制器.docx_第2页
第2页 / 共50页
温度控制器.docx_第3页
第3页 / 共50页
温度控制器.docx_第4页
第4页 / 共50页
温度控制器.docx_第5页
第5页 / 共50页
温度控制器.docx_第6页
第6页 / 共50页
温度控制器.docx_第7页
第7页 / 共50页
温度控制器.docx_第8页
第8页 / 共50页
温度控制器.docx_第9页
第9页 / 共50页
温度控制器.docx_第10页
第10页 / 共50页
温度控制器.docx_第11页
第11页 / 共50页
温度控制器.docx_第12页
第12页 / 共50页
温度控制器.docx_第13页
第13页 / 共50页
温度控制器.docx_第14页
第14页 / 共50页
温度控制器.docx_第15页
第15页 / 共50页
温度控制器.docx_第16页
第16页 / 共50页
温度控制器.docx_第17页
第17页 / 共50页
温度控制器.docx_第18页
第18页 / 共50页
温度控制器.docx_第19页
第19页 / 共50页
温度控制器.docx_第20页
第20页 / 共50页
亲,该文档总共50页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

温度控制器.docx

《温度控制器.docx》由会员分享,可在线阅读,更多相关《温度控制器.docx(50页珍藏版)》请在冰点文库上搜索。

温度控制器.docx

温度控制器

温度控制器

姓名:

专业班级:

指导教师:

摘要

本文主要讨论Pt100传感器在温度控制系统中的应用。

采用Pt100恒流源三线制,采集信号经过AD7705转换之后一方面传至ATmega16L单片机处理并通过LED数码管显示出来,另一方面通过PID算法调节PWM,从而控制双向可控硅控制周期内的通断占空比(即控制温控箱加热平均功率的大小),进而达到对温控箱温度进行控制的目的。

本文详细阐述了基于单片机的温度控制系统的硬件组成、软件设计及相关的接口电路设计。

并且充分考虑了系统的可靠性,采取了相应的措施予以保证。

针对温控系统进行了实验,通过对实验数据的分析表明本文所述的基于单片机的温度控制系统的设计的合理性和有效性。

关键词:

单片机温度控制Pt100PID控制

 

TemperatureController

Abstract:

ThisarticlefocusedonPt100temperaturesensorcontrolsystem.Constantcurrentsourceusingthree-wirePt100system,signalacquisitionontheonehand,aftertheconversionAD7705single-chipprocessingandspreadthroughATmega16LdigitaltubeLEDdisplayontheotherhand,throughtheregulationofPIDalgorithmPWM,tocontroltwo-waythyristorcontrolcycleoffdutycycle(thatis,temperaturecontrolboxthesizeoftheheatingpower),temperature-controlledboxtoachievethepurposeoftemperaturecontrol.Describedindetailinthisarticlebasedonsingle-chiptemperaturecontrolsystemhardwarecomponents,softwareinterfacedesignandcircuitdesign.Andgivefullconsiderationtothereliabilityofthesystemandtaketheappropriatemeasurestoensurethat.Temperaturecontrolsystemfortheexperiment,throughtheanalysisofexperimentaldatadescribedinthispaper,basedonsingle-chiptemperaturecontrolsystemdesignandeffectivenessofthereasonable.

KEY:

MicrocontrollerTemperaturecontrolsystemPt100PIDControl

 

目录

第1章前言1

1.1课题背景及实际意义1

1.2主要研究内容1

1.3主要成果2

第2章系统总体方案设计3

2.1系统方案论证3

2.2系统方案设计5

2.2.1Pt100的选择5

2.2.2控温方案选择5

2.2.3控温测温的算法6

第3章系统硬件设计8

3.1主控模块器件选择及设计8

3.2输入通道设计10

3.2.1Pt100温度传感器11

3.2.2AD转换12

3.3输出通道设计16

3.3.1温度显示16

3.3.2加热电路18

3.4串行通信接口电路19

3.5电源电路20

3.6硬件抗干扰措施21

3.7本章小结22

第4章系统软件设计23

4.1开发环境介绍23

4.1.1ICCAVR介绍23

4.1.2ICCAVR中的文件类型及其扩展名24

4.2系统软件组成25

4.3主程序模块25

4.4数据采集模块26

4.5数据处理模块30

4.5.1数字滤波30

4.5.2显示处理30

4.6PID控制31

4.7软件抗干扰措施32

第5章测量调试33

5.1系统调试33

5.2调试结果35

结论37

致谢38

参考文献39

第1章前言

1.1课题背景及实际意义

温度是生活及生产中最基本的物理量,它表征的是物体的冷热程度。

自然界中任何物理、化学过程都紧密的与温度相联系。

在很多生产过程中,温度的测量和控制都直接和安全生产、提高生产效率、保证产品质量、节约能源等重大技术经济指标相联系。

因此,温度的测量与控制在国民经济各个领域中均受到了相当程度的重视。

在实际的生产实验环境下,由于系统内部与外界的热交换是难以控制的,其他热源的干扰也是无法精确计算的,因此温度量的变化往往受到不可预测的外界环境扰动的影响。

为了使系统与外界的能量交换尽可能的符合人们的要求,就需要采取其他手段来达到这样一个绝热的目的,例如可以让目标系统外部环境的温度与其内部温度同步变化。

根据热力学第二定律,两个温度相同的系统之间是达到热平衡的,这样利用一个与目标系统温度同步的隔离层,就可以把目标系统与外界进行热隔离。

另外,在大部分实际的环境中,增温要比降温方便得多。

因此,对温度的控制精度要求比较高的情况下,是不允许出现过冲现象的,即不允许实际温度超过控制的目标温度。

特别是隔热效果很好的环境,温度一旦出现过冲,将难以很快把温度降下来。

这是因为很多应用中只有加热环节,而没有冷却的装置。

同样道理,对于只有冷却没有加热环节的应用中,实际温度低于控制的目标温度,对控制效果的影响也是很大的。

近年来,温度的检测在理论上发展比较成熟,但在实际测量和控制中,如何保证快速实时地对温度进行采样,确保数据的正确传输,并能对所测温度场进行较精确的控制,仍然是目前需要解决的问题。

温度控制系统的设计是为了满足市场对成本低、性能稳定、可远程监测、控制现场温度的需求而做的课题,具有较为广阔的市场前景。

1.2主要研究内容

本设计主要是完成对温度的测量和PID控制以及LED显示,主要研究内容包括:

1如何实现温度信号的采集并转换为数字信号。

2如何将采集的温度通过AVR单片机控制运算并通过LED数码管显示出来。

3如何让将测得温度值与设定温度值进行比较,并进行PID调节至设定值。

4如何提高系统精度,对系统采取何种保护措施。

5系统的软、硬件调试工作。

1.3主要成果

本次毕业设计按照毕业设计任务书的规划,基本完成了毕业设计课题的预期目标,并取得了良好的效果。

通过毕业设计得到如下几个方面的成果:

①对单片机温度控制系统,计算机与单片机之间的通信,以及PID控制原理有了更进一步的了解。

②完成系统的硬件设计,包括采样电路、A/D转换电路、主控制电路、控温电路、保护电路等等的设计。

③完成系统的软件设计,包括主程序模块、控制运算模块、数据输入输出及处理模块等一些子功能模块的设计。

④实现了单片机与计算机之间的通信。

⑤完成了系统的软、硬件调试工作。

 

第2章系统总体方案设计

2.1系统方案论证

温度控制仪的硬件电路一般采用模拟电路和单片机两种形式。

模拟控制电路的各控制环节一般由运算放大器、电压比较器、模拟集成电路以及电容、电阻等外围元器件组成。

它的最大优点是系统响应速度快,能实现对系统的实时控制。

根据计算机控制理论可知,数字控制系统的采样速率并非越快越好,它还取决于被控系统的响应特性。

在本系统中,由于温度的变化是一个相对缓慢的过程,对温控系统的实时性要求不是很高,所以模拟电路的优势得不到体现。

另外,模拟电路依靠元器件之间的电气关系来实现控制算法,很难实现复杂的控制算法。

单片机是大规模集成电路技术发展的产物,属于第四代电子计算机。

它是把中央处理单元CPU(CentralProcessingUnit)、随机存取存储器RAM(RandomAccessMemory)、只读存储器ROM(ReadOnlyMemory)、定时/计数器以及I/O(Input/Output)输入输出接口电路等主要计算机部件都集成在一块集成电路芯片上的微型计算机,它的特点是:

功能强大、运算速度快、体积小巧、价格低廉、稳定可靠、应用广泛。

由此可见,采用单片机设计控制系统,不仅可以降低开发成本,精简系统结构,而且控制算法由软件实现,还可以提高系统的兼容性和可移植性。

由于设计的温度控制器测温范围为室温至125℃,系统选用Pt100传感器,因为其在室温至125℃范围内具有信号强、精度高、稳定性和复现性好的特点。

Pt100传感器检测温度并将其转换为微弱的电信号,通过AD转换器转换为数字量,A/D转换器采用的是16位的AD转换芯片AD7705,它包括由缓冲器和增益可编程放大器(PGA)组成的前端模拟调节电路、∑-△调制器、可编程数字滤波器等部件组成。

能直接将传感器测量到的多路微小信号进行A/D转换。

综合考虑后温度控制系统以ATmega16L单片机为核心,温控箱的温度由Pt100铂电阻温度传感器检测并转换成微弱的电压信号,再通过16位的A/D转换器AD7705转换成数字量。

此数字量经过数字滤波之后,一方面将温控箱的温度通过控制面板上的LED数码管显示出来;另一方面将该温度值与设定的温度值进行比较,根据其偏差值的大小,采用PID控制算法进行运算,最后通过控制双向可控硅控制周期内的通断占空比(即控制温控箱加热平均功率的大小),进而达到对温控箱温度进行控制的目的。

如果实际测得的温度值超过了系统给定的极限安全温度,保护电路会做出反应,从而保护温控箱。

单片机的软件开发主要用到两种语言:

汇编语言和C语言。

与汇编语言相比,C语言具有以下的特点:

①具有结构化控制语句结构化控制语言的显著特点是代码和数据的分隔化,即程序的各个部分除了必要的信息交流外彼此独立。

这种结构化方式可使程序层次清晰,便于使用、维护及调试。

②适用范围大和可移植性好同其他高级语言一样,C语言不依赖于特定的CPU,其源程序具有良好的可移植性。

目前,主流的CPU和常见的MCU都有C编译器。

所以,本系统的软件选择使用C语言开发。

由于整个系统软件比较复杂,为了便于编写、调试、修改和增删,系统程序的编制适合采用模块化的程序结构,故要求整个控制系统软件由许多独立的小模块组成,它们之间通过软件接口连接,遵循模块内数据关系紧凑,模块之间数据关系松散的原则,将各功能模块组织成模块化的软件结构。

温度控制算法方面,在对温控箱数学模型辨识的基础之上,结合本温控系统的要求采用了经典的PID控制算法,这主要是由于PID控制相对来说算法简单、鲁棒性好以及可靠性高。

此外,在设计PID控制器时,依靠经验和试验的方法在系统调试时确定PID控制器的参数KP、KI、KD,然后用代码实现算法。

系统的软件主要由主程序模块、数据采集模块、数据处理模块、控制算法模块等组成。

主模块的功能是为其余几个模块构建整体框架及初始化工作;数据采集模块的作用是将A/D转换的数字量采集并储存到存储器中;数据处理模块是将采集到的数据进行一系列的处理,其中最重要的是数字滤波程序;控制算法模块完成控制系统的PID运算并且输出控制量。

综上所述:

系统所选元件和设计思路、设计语言的选择合理可行。

2.2系统方案设计

2.2.1Pt100的选择

传感器的种类多种多样,电阻式温度检测器(RTD,ResistanceTemperatureDetector)是一种物质材料做成的电阻,它会随温度的上升而改变电阻值,如果它随温度的上升而电阻值也跟著上升就称为正电阻系数,如果它随温度的上升而电阻值反而下降就称为负电阻系数。

大部分电阻式温度检测器是以金属作成的,其中以白金(Pt)做成的电阻式温度检测器,最为稳定—耐酸碱、不会变质、相当线性,在所有的温度传感器中铂电阻是最稳定的一种,其测温范围宽达—250℃~640℃,因此是一种具有代表性的测温方法。

根据本设计系统要求我们选择Pt100作为温度传感器检测温度,Pt100型铂电阻意思即说明其铂电阻在0℃时电阻值为100Ω,在-200℃到850℃范围内是精度最高的温度传感器之一。

与热电偶、热敏电阻相比较,铂的物理、化学性能都非常稳定,尤其是耐氧化能力很强,离散性很小,精度最高,灵敏度也较好。

这些特点使得铂电阻温度传感器具有信号强、精度高、稳定性和复现性好的特点。

铂电阻温度传感器主要有两种类型:

标准铂电阻温度传感器和工业铂电阻温度传感器。

在测量精度方面,工业铂电阻的测量稳定性和复现性一般不如标准铂电阻,这主要有两个方面的原因,其一是高温下金属铂与周围材料之间的扩散使其纯度受到污染,从而降低铂电阻测温的复现性能,其二是因为高温条件下的应力退火影响了其复现性能。

但是标准铂电阻温度传感器也存在价格昂贵,维护起来较为困难等缺点。

考虑到成本,故在本系统中采用工业级Pt100铂电阻作为温度传感器。

2.2.2控温方案选择

首先由Pt100热电阻温度传感器所测得的温度实际值通过信号调理电路和16位的AD7705转换后送入单片机ATmega16L;然后测量出的温度实际值和设定的目标温度值进行比较,所得的差值经自适应模糊PID算法得出控制量,控制PWM波的输出占空比。

利用软件脉宽调制技术,由PD5脚输出相应的PWM波,实现对双向可控硅的控制,从而控制发热丝的发热功率。

其中控温电路中采用可控硅技术,可控硅一种大功率电器元件,也称晶闸管具有体积小、效率高、稳定性好、工作可靠等优点。

本控温系统采用BT136双向可控硅,双向可控硅在结构上相当于两个单向的可控硅方向连接,这种可控硅具有双向导通功能,其通断状态由控制极G决定。

在控制极G上加正脉冲(或负脉冲)可使其正向(或反向)导通。

这种装置的优点是控制电路简单,没有反向耐压问题,因此特别适合做交流无触点开关使用。

通过BT136双向可控硅的通断来控制发热丝的通断周期,从而控制发热丝温度。

和大功率的场效应管一样,可控硅在与微型计算机接口连接时也需加接光电隔离器,触发脉冲电压应大于4V;脉冲宽度应大于20us。

为了提高效率,要求触发脉冲与交流电压同步,采用检测交流电过零点来实现。

通过光电隔离器控制双向可控硅,实现对电阻丝加热。

2.2.3控温测温的算法

本文控温采用PID控制方案,采集和控制的关系是:

温度->PID算法->PWM控制可控硅导通角加热。

这里可以看出PID类似于数学的函数,温度和PWM加热就是通过这个函数映射过来的。

只要温度采集正确并和设置的值作比较(减法),得出一个差值,通过PID算法后得出控制量输出,就能达到目的。

接着进行PID的参数调试,把最优参数调试出来(数学的函数)。

PID控制器是一种线性控制器,它根据给定值r(t)与实际输出值y(t)构成控制偏差e(t):

:

e(t)=r(t)-y(t)

将偏差e(t)的比例(proportional)、积分(Integral)和微分(Differential)通过线性组合构成控制量,对被控对象进行控制,因此称为PID控制。

PID控制系统原理如图2-1:

r(t)+e(t)+y(t)

-

+

图2-1

在模拟系统中,PID算法的表达式为:

P(t)=Kp[e(t)+

]

式中P(t)----调节器的输出信号

e(t)-----调节器的偏差信号

Kp-----调节器的比例系数

TI-----调节器的积分时间

TD-----调节器的微分时间

PID控制器各校正环节的作用如下:

(1)比例环节即时成比例地反映控制系统的偏差信号e(t),偏差一旦产生,控制器立即产生控制作用,以减少偏差;

(2)积分环节主要用于消除静差,提高系统的无差度。

积分作用的强弱取决于积分时间常数,TI越大,积分作用越弱,反之则越强;

(3)微分环节能够反映偏差信号的变化趋势(变化速率),并且能在偏差信号值变得太大之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减少调节时间。

 

第3章系统硬件设计

本文所研究的温度控制系统硬件部分按功能大致可以分为以下几个部分:

单片机主控模块、输入通道、输出通道、保护电路等。

图3-1为硬件设计原理图,温度控制系统以ATmega16L单片机为核心,温控箱的温度由Pt1OO铂电阻温度传感器检测并转换成微弱的电压信号,再通过16位的A/D转换器AD7705转换成数字量并经过数字滤波之后,一方面将温控箱的温度通过控制面板上的液晶显示器显示出来;另一方面将该温度值与设定的温度值进行比较,根据其偏差值的大小,采用PID控制算法进行运算,最后通过控制双向可控硅控制周期内的通断占空比(即控制温控箱加热平均功率的大小),进而达到对温控箱温度进行控制的目的。

如果实际测得的温度值超过了系统给定的极限安全温度,保护电路会做出反应,从而保护温控箱。

图3-1

3.1主控模块器件选择及设计

主控模块电路由ATmega16L单片机、外部时钟电路、复位电路。

其中ATmega16L单片机的特点:

高性能、低功耗的8位AVR微处理器。

先进的RISC结构:

131条指令-大多数指令执行时间为单个时钟周期,32个8位通用工作寄存器,全静态工作,工作于16MHz时性能高达16MIPS,只需两个时钟周期的硬件乘法器。

非易失性程序和数据存储器:

16K字节的系统内可编程Flash(擦写寿命:

10,000次),具有独立锁定位的可选Boot代码区(通过片上Boot程序实现系统内编程真正的同时读写操作),512字节的EEPROM(擦写寿命:

100,000次),1K字节的片内SRAM,可以对锁定位进行编程以实现用户程序的加密。

JTAG接口(与IEEE1149.1标准兼容):

符合JTAG标准的边界扫描功能,支持扩展的片内调试功能,通过JTAG接口实现对Flash、EEPROM、熔丝位和锁定位的编程。

外设特点:

两个具有独立预分频器和比较器功能的8位定时器/计数器,一个具有预分频器、比较功能和捕捉功能的16位定时器/计数器,具有独立振荡器的实时计数器RTC,四通道PWM,8路10位ADC(8个单端通道,TQFP封装的7个差分通道,2个具有可编程增益(1x,10x,或200x)的差分通道),面向字节的两线接口,两个可编程的串行USART,可工作于主机/从机模式的SPI串行接口,具有独立片内振荡器的可编程看门狗定时器,片内模拟比较器。

特殊的处理器特点:

上电复位以及可编程的掉电检测,片内经过标定的RC振荡器,片内/片外中断源。

6种睡眠模式:

空闲模式、ADC噪声抑制模式、省电模式、掉电模式、Standby模式以及扩展的Standby模式[5]

图3-2为ATmega16TQFP封装引脚图:

图3-2

单片机复位电路由外部复位电路实现,ATmega16复位引脚为

(4脚),图3-3(a)为ATmega16L复位电路;图3-3(b)为外部振荡电路,本系统采用的晶振振荡器电路频率为7.3728M。

图3-3(a)图3-3(b)

3.2输入通道设计

系统输入通道的作用是将温控箱的温度(非电量)通过传感器电路转化为电量(电压或电流)输出,本系统就是将温度转化为电压的输出。

由于此时的电量(电压)还是单片机所不能识别的模拟量,所以还需要进行A/D转换,即将模拟的电量转化成与之对应的数字量,提供给单片机判断和控制。

输入通道由传感器、A/D转换等电路组成。

3.2.1Pt100温度传感器

铂电阻测温电路的工作方式一般分为恒压方式和恒流方式两种。

按照接线方式的不同又可以分为二线制、三线制和四线制三种。

四线制就是从热电阻两端引出4线,接线时电路回路和电压测量回路独立分开接线,测量精度高,需要导线多。

三线制就是引出三线,Pt100B铂电阻接线时电流回路的参端和电压测量回路的参考为一条线(即检测设备的I-端子和V-端子短接)。

精度稍好。

两线制就使引出两线,Pt100B铂电阻接线时电流回路和电压测量回路合二为一(即检测设备的I-端子和V-端子短接、I+端子和V+短接)。

测量精度差。

本系统采用的是恒流三线制接法对Pt100铂电阻进行采样。

铂电阻温度传感器采样电路如图3-4所示。

图3-4

因为:

因为:

R4=R5=R7=R8

所以:

2VN=Vout+VREF2VP=Vg

得出:

Vg-Vout=VREF

并且:

I1=I2

I1(100+Rt)-100I2=VOUT1

V2Rt+100V2=100V1V1-V2=

=I2Rt

所以:

I2Rt=Vout1=RtI

上面式子中Rt为温度传感随着温度变化所变化的电阻值。

采用恒流三线制接法的测温电路中需要用到一个稳定的基准电压源。

本系统采用精密基准电压源Ref192对温度传感器进行稳压,ref192的优点是与普通的基准电源相比具有温漂小、输出噪声小、动态内阻小、有短路保护等特点。

主要参数是:

基准电压VR=2.5V,温度系数TC﹤5ppm/℃,输出噪声电压为25uv。

当基准电压VR=2.5V,温度范围在10℃~80℃时,温度传感器输出电压范围为1.5V~2V。

图中参考电压VREF即来自Ref192。

基准电压源电路如图3-5所示。

图3-5

3.2.2AD转换

在单片机控制系统中,控制或测量对象的有关变量,往往是一些连续变化的模拟量,如温度、压力、流量、位移、速度等物理量。

但是大多数单片机本身只能识别和处理数字量,因此必须经过模拟量到数字量的转换(A/D转换),才能够实现单片机对被控对象的识别和处理。

完成A/D转换的器件即为A/D转换器。

A/D转换器的主要性能参数有:

(1)分辨率分辨率表示A/D转换器对输入信号的分辨能力。

A/D转换器的分辨率以输出二进制数的位数表示。

(2)转换时间转换时间指A/D转换器从转换控制信号到来开始,到输出端得到稳定的数字信号所经过的时间。

不同类型的转换器转换速度相差甚远。

(3)转换误差转换误差表示A/D转换器实际输出的数字量和理论上的输出数字量之间的差别,常用最低有效位的倍数表示。

(4)线性度线性度指实际转换器的转移函数与理想直线的最大偏移。

目前有很多类型的A/D转换芯片,它们在转换速度、转换精度、分辨率以及使用价值上都各具特色,其中大多数积分型或逐次比较型的A/D转换器对于高精度测量,其转换效果不够理想。

温度控制中A/D转换是非常重要的一个环节。

传统的电路设计方法是在A/D转换前增加一级高精度的测量放大器,这样就增加了成本,电路也较为复杂。

综合考虑,本系统选用AD(ANALOGDEVICES)公司生产的16位AD转换芯片AD7705作为本温控系统的A/D转换器。

AD7705是AD公司生产的16位∑-△型A/D转换器,用于测量低频模拟信号,它包括由缓冲器和增益可编程放大器(PGA)组成的前端模拟调节电路、∑-△调制器、可编程数字滤波器等部件组成,可通过软件编程来直接测量传感器输出的各种微小信号。

AD7705采用三线串行接口,具有两个全差分

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > PPT模板 > 中国风

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2