基于单片机的数字电能表设计毕业论文.docx

上传人:b****8 文档编号:9606575 上传时间:2023-05-20 格式:DOCX 页数:23 大小:36.51KB
下载 相关 举报
基于单片机的数字电能表设计毕业论文.docx_第1页
第1页 / 共23页
基于单片机的数字电能表设计毕业论文.docx_第2页
第2页 / 共23页
基于单片机的数字电能表设计毕业论文.docx_第3页
第3页 / 共23页
基于单片机的数字电能表设计毕业论文.docx_第4页
第4页 / 共23页
基于单片机的数字电能表设计毕业论文.docx_第5页
第5页 / 共23页
基于单片机的数字电能表设计毕业论文.docx_第6页
第6页 / 共23页
基于单片机的数字电能表设计毕业论文.docx_第7页
第7页 / 共23页
基于单片机的数字电能表设计毕业论文.docx_第8页
第8页 / 共23页
基于单片机的数字电能表设计毕业论文.docx_第9页
第9页 / 共23页
基于单片机的数字电能表设计毕业论文.docx_第10页
第10页 / 共23页
基于单片机的数字电能表设计毕业论文.docx_第11页
第11页 / 共23页
基于单片机的数字电能表设计毕业论文.docx_第12页
第12页 / 共23页
基于单片机的数字电能表设计毕业论文.docx_第13页
第13页 / 共23页
基于单片机的数字电能表设计毕业论文.docx_第14页
第14页 / 共23页
基于单片机的数字电能表设计毕业论文.docx_第15页
第15页 / 共23页
基于单片机的数字电能表设计毕业论文.docx_第16页
第16页 / 共23页
基于单片机的数字电能表设计毕业论文.docx_第17页
第17页 / 共23页
基于单片机的数字电能表设计毕业论文.docx_第18页
第18页 / 共23页
基于单片机的数字电能表设计毕业论文.docx_第19页
第19页 / 共23页
基于单片机的数字电能表设计毕业论文.docx_第20页
第20页 / 共23页
亲,该文档总共23页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

基于单片机的数字电能表设计毕业论文.docx

《基于单片机的数字电能表设计毕业论文.docx》由会员分享,可在线阅读,更多相关《基于单片机的数字电能表设计毕业论文.docx(23页珍藏版)》请在冰点文库上搜索。

基于单片机的数字电能表设计毕业论文.docx

基于单片机的数字电能表设计毕业论文

基于单片机的数字电能表设计--毕业论文

12届

分类号:

TM933.4

单位代码:

HC-DQ121

基于单片机控制的数字电能表设计

姓名:

EzrealYi

院系:

物理与机电工程学院

专业:

电气工程及其自动化

班级:

学号:

05315127

时间:

2016年1月1日

I

摘要

在设计中试图探索分时计费数字电能表的设计技术,主要工作内容有:

基于MSP430C323进行了电能表的完整设计,探索了利用MSP430C323的有限硬件资源与

2软件的有机结合,实现实时时钟、IC和串行通信等接口的设计方法;以电能表为对象,重点探讨了基于低功耗单片机的低功耗仪表的基本原理和设计技术,综合设计使电能表的工作可靠性得到大大提高,对其它低功耗仪表的设计具有参考价值。

关键词:

多费率电能表;MSP430单片机;硬软件合成

II

ABSTRACT

Inthedesign,Itrytosearchthedesigntechniqueoftimesharingchargingdigitalelectricalenergymeter.Themainworkcontentincludes:

madeoutintegritythedesignoftheelectricalenergymeterbasedonMSP430C323H,searchedforusingthelimitedhardwareresourcesandthesoftwareorganicsynthesisofMSP430C323,realizedthe

2designmethodofreal-timeclock,ICandserialportcommunication;theelectrical

energymeterastheobject,,thebasistheoryandthedesigntechniqueoflowpowerlossinstrumentbasingonthelowpowerSingle-Chipcomputerhasbeendiscussed,theintegrateddesignmaketheelectricalenergymeter’soperationalreliabilitytoimprove

greatly,itsreferencevalueisusefultodesignotherkindlowpowerlossmeter.

Keywords:

Multi-tariffselectricalenergymeter;MSP430Single-Chipcomputer;hardwareandsoftwaresynthesis

III

1引言...............................................................12电能测量与多费率电能表.............................................22.1电能参数的测量.................................................22.2多费率电能表的原理.............................................33电能表的硬件电路设计...............................................43.1硬件总体方案...................................................4

3.2MSP430C3XX系列单片机.........................................53.3ADC14的原理与电压电流输入通道的设计..........................6

3.4电压电流输入通道的设计.........................................8

23.5串行EPROM接口................................................93.6串行通信接口的实现............................................103.7红外接口的设计................................................104电能表的软件设计..................................................124.1电能表的主流程与模块化程序设计................................12

4.2电能测量模块的设计............................................134.3电能计费模块的软件设计........................................15

24.4EPROM读写模块的设计.........................................155总结..............................................................20参考文献............................................................21谢辞................................................................22

IV

1引言

电能是社会生产、人民生活必需的重要能源之一,随着国民经济的不断发展,电力需求急骤上升,电力供应与电力需求出现了不平衡。

电能表是当前电量计量和经济结算的主要工具。

本课题研制了基于MSP430的单相多功能电能表,同时对系统的软硬件设计也作了介绍。

本选题研制的单相多功能电能表以MSP430单片机作为电能表的微处理器,MSP430是超低功耗的16位单片机,采用精简指令集。

它具有丰富的片内外设,功能强大,并且具有很低的电能消耗。

图1是电能表的结构原理图。

电源信号

存储器

电压图象

LCD

电流图象MSP430

通信

脉冲

时钟

图1电能表的结构原理图

单相多功能电表由输入转换部分、单片机部分、通信部分和输出部分组成。

其中电压电流经输入转换变成单片机可以处理的信号,单片机采用MSP430X3XX,通信采用外通信方式,输出部分则是有关数据送LCD显示和脉冲输出。

本电能表可实现以下功能:

(1)电能计量:

对市电的电压、电流采样处理,得到电压有效值和电流有效值,有功功率和无功功率等电能参数;

(2)费率管理:

每天有3种费率可供选择;

1

(3)时间管理:

具有日历、计量和闰年自动切换功能;

(4)通信:

利用红外通信方式,与电能表手持抄录器交换数据;

(5)显示:

可显示上月、本月总电量及各费率时段的电量。

该电能表的主要技术指标如下:

(1)电能计量精度达到1%;时钟记时误差

(2)电气性能:

电子模块功耗<3VA;

工作电压范围0.8—1.2V额定电压;

电池寿命?

8年。

(3)环境条件:

工作温度:

-20?

—+55?

;

运输温度:

-25?

—+70?

;

(4)红外通信距离?

4m。

2电能测量与多费率电能表2.1电能参数的测量

电压、电流测量:

周期性电压、电流的瞬时值是随时变化的,所以一般用有效值表征它们的做功能力并度量其“大小”,如电流有效值的定义是一个周期性电流的做功能力和直

iTR流电流的做功能力相比,则有:

在相同时间内周期电流流过电阻所做的功与

I直流电流流过电阻所做功相等,就称此直流电流的量值为此周期电流的有效值。

RTI直流电流流过电阻在时间内所做的功为

2(2,1)WIRT,1

iiRT周期性电流流过电阻,在时间内,电流所做的功为

T2WiRdt,(2,2)2,0

WW,根据以上定义,即12

T22iRdtIRT,(2,3),0

i于是,周期电流的有效值为

2

T12(2,4)Iidt,,0T

同理,电压有效值为

T12(2,5)Vudt,,0T

上面两式(2,4)和(2,5)式,即是对电流、电压求均方根值的运算。

根据周期性连续函数有效值的定义,将电压、电流函数离散化,得

N12(2,6)Vn,u(),Nn,1

N12Iin,()(2,7),Nn1,

式中和分别表示被测电压、电流信号离散采样值。

in()un()

2.2多费率电能表的原理

[9]多费率电能表由电能测量单元和具有分时计量功能的电路组成,对电子式电能表而言,测量为了实现分时计量,电表设计的关键是设有计时准确、时段误差和日误差小、接通/切换准确的时钟和时控电路,多费率电能表原理如图2。

显示器/计数器显示器

分时记数、存储、译码

时钟

尖峰平谷时基秒信号时控电路

电源

测量单元

市电

图2多费率电能表结构图

3

3电能表的硬件电路设计

3.1硬件总体方案

图3给出了电能表的硬件框图。

MSP430X3XX串行EEPROMA/D电压TV信号调理

处复理LCD接口费

率电流TA信号调理计

算红外接口单

元控

算其他接口

检验脉冲

电源管理

图3单相电子电能表的结构模块

2图3中的硬件按功能可分为测量、单片机、显示器、串行EPROM存储、通信和电源等单元。

(1)测量:

市电经过电压互感器和电流互感器转换成交流低电平信号后输入到采样电路,经A/D转换器处理的数字量送入计算机。

(2)单片机:

数据处理、计算、显示和通信的控制中心。

(3)显示:

采用LCD显示累计电能或其它数据。

2(4)串行EPROM:

单片机内部RAM掉电时将丢失随机存取的数据。

故外

2接一片EPROM。

主要用来存储各个时段的用电量、电能表常数、时间参数。

(5)通信:

利用红外通信实现电能表与手持抄录器之间的数据传输。

(6)电源:

电源的提供可采取两种方案,一是市电经过整流、滤波、稳压,得到稳定的直流低电压,向表内供电。

这种方案的缺点是需要复杂的电源电路,导致造价、功耗和停电数据保护和电气隔离等一系列问题。

另一种方案是采用电池供电,这在电表采用低功耗设计时是可行的,并且带来诸多好处。

对于电表来说,这两种供电方式都是可行的。

本选题探索了电池供电方案,并采用下列措施

4

[3]降低电表的功耗:

(1)采用低功耗MSP430系列单片机;

(2)使用低功耗外围器件;

(3)数据的采集和功率的计算按一定周期(如每秒钟一次)唤醒,电表大部分时间处于休眠状态。

3.2MSP430C3XX系列单片机

单片机是电能表的数据处理部分的核心部件,系统要求在短时间内处理大量的数据,因此要求单片机有较高的运算速度,采用MSP430系列单片机MSP430X3XX作为电能表的核心。

MSP430系列单片机是以超低功耗为主要特色的16位单片机,其中MSP430X3XX系列属于外围较为丰富且支持LCD的中档产品。

[1,3]该产品主要特点如下:

.2.5—5.5V工作电压;

.消耗电流0.1—400µA,5种低功率耗方式;

.16位RISC(ReducedInstructionSetComputing,精简指令集计算机)体系,仅27条核心指令,指令周期300nS;

.采用32KHz晶振,内部时钟达3.3MHz;

.片内LCD驱动器多达84段;

.片内12+2位A/D转换;

.灵活强大的处理能力;

.看门狗定时器;

.定时器/口(具有比较器的2个八位或1个16位定时器,5个输出一个I/O适

于作斜坡A/D转换);

.基本定时器((2个八位或1个16位定时器);

.I/O口0(8个I/O均有中断能力)。

由此可见它特别适合用于智能仪表、智能化家用电器、电池供电便携式设备等产品之中。

八位定时器/计数器:

8位定时器/计数器(8-bitTimer/Counter)的原理主要包含以下模块:

(1)8位带预置数寄存器的增计数器;

(2)8位控制寄存器;

5

(3)输入时钟选择器;

(4)沿检测电路(如检测异步通信的起始位);

(5)由8位计数器的进位信号触发的输入输出数据锁存器。

3个主要功能是:

(1)串行通信或数据交换;

(2)脉冲计数或脉冲累加;

(3)定时器。

由于在MSP430C323单片机中没有硬件串口通信功能,利用8位定时器/计数

4,器的实现软件串口通信功能。

在这种应用中将定时器/计数器用作波特率发生器,将P0.1和P0.2分别用作异步串行通信的RXD和TXD引脚。

在该模块的控制寄存器中的最低2位用于通信,其中RXD是一个只读位,它在计数器产生进位时将P0.1引脚上的数据予以锁存,而TXD的数据由软件写入,而在计数器产生进位时将这个数据送到P0.2引脚。

3.3ADC14的原理与电压电流输入通道的设计

MSP430的ADC14模数转换模块:

在电能表设计中,A/D的选择十分重要,它直接影响了电能表的准确度,而正确选择A/D转换器的关键是合理选择A/D的字长(位数)和转换速率。

1A/D转换器位数决定了其分辨率,n位A/D转换器的分辨率为。

在仪表n2设计中,A/D转换器的分辨率通常应比总精度要求的最低分辨率高一个等级。

电能表在一般测试系统中要求的最高精度为一级(1%)14位A/D转换器的分辨率在理论上可以达到0.0061%,可见14位A/D转换器完全可以满足测量精度的要求。

[12]MSP430X3XX系列单片机采用的14位数模转换模块,ADC14有以下特点:

(1)A0—A5为6路A/D转换的模拟量输入引脚,然而这6个引脚也可以作为数字量的输入口;

(2)有4路模拟输入端用于可编程电流源;

(3)内建采样/保持电路;

(4)在转换结束时提供中断信号,同时有转换结果暂存器用于暂存结果,直到下次转换开始;

(5)低功耗,可将模块的供电开启或关闭;

6

(6)4个内部通道,可用于温度、AVcc及外部参考电平的采样;

(7)整个转换过程由模块独立完成,不需要CPU的额外开销;

(8)可选12位或14位分辨率,且有较快的转换速度。

ADC14的基本原理可通过其控制寄存器ACTL来加以描述。

ACTL是对ADC进行编程的主要寄存器,其内容如表1所示。

表1ACTL中各位意义

1514131211109876543210

量程电流源AD输入选择0ADCLKPDVREFSOC

1)启动转换(SOC)

该只写位启动由ACTL寄存器其它各位所定义的转换,其读出总是0。

2)电压基准位(VREF)

该位决定采用外部的或是内部的电压基准用于转换。

VREF=0时使用外部基准,基准电压输入端SVcc上外接可提供80μA电流的基准电压:

VREF=1时采用内部电压基准,此时在AVcc和SVcc之间的一个晶体管导通,这时SVcc输出端子直接连接到AVcc上,SVcc上无须外接基准电压。

SVcc端上的电压是所有ADC

14的基准,代表2(16384)。

3)转换输入选择(ADInputSelect)

B5=1时不选择任何ADC通道;B5=0时,B2—B4选择A0—A7等8个输入

[5,6,7]端之一(MSP430X32X系列无A6,A7输入端)。

4)电流源输出选择(CurrentSource)

选择A0—A3中的某一个作为电流源的输出。

5)量程选择(RangeSelect)

定义模拟量的输入范围如表2所示。

整个模块可以设置为两种工作模式:

12位模式和14(12+2)位模式。

转换模式由ACTL寄存器中的第11位的状态决定。

表2ACD的量程选择

范围模拟输入范围ACTL11ACTL10ACTL9

0.00*Vref?

Vin<0.25*Vref000A

0.25*Vref?

Vin<0.50*Vref001B

0.50*Vref?

Vin<0.75*Vref010C

0.75*Vref?

Vin<1.00*Vref011D

自动在A.B.C.D间自动选择1xx

7

在14位模式下,输入信号将被采样两次:

一次是确定电压范围的高2位,后一次是12位精度转换,这样转换的结果就是14(12+2)位结果。

对于12位转换模式,与其它MSP430单片机12位A/D转换原理一样,只是需要预先设定转换电压范围。

在两种模式下,当一个转换完成时,都将自动给出中断标志EOC=1,表示

[10]完成了一次转换。

6)掉电位(PowerDown-PD)

PD=1时关掉比较器、SV开关和电流源等,使ADC功耗最少。

CC

7)时钟频率选择(ClockFrequencySelect)

ACTL.13和ACTL.14用于选择A/D转换的时钟频率ADCLK为MCLK除以1、2、3或4。

14位ADC完成一次转换总共需要132个ADCLK周期。

若MCLK为32768*32=1048576Hz,并且选定ADCLK等于MCLK,则每次A/D转换所需的时间为:

132/1048576Hz=125.885μs。

在电能表的设计中需要通过定时器中断来稳定采样频率,定时中断的间隔必须大于125.885μs。

3.4电压电流输入通道的设计

本选题的设计是面向户用型电能计量的,其成本的控制是能否进入市场的关键。

因此直接采用电阻获取电压和电流信号,电压、电流采集通道实现将交流高电平信号转换成单片机能够处理的低电平信号,其原理性设计如图4所示。

交流被测电压经电阻分压器分压后连接单片机的A/D转换输入A1、A5。

交流被测电流经与中线连接并与负载串联的采样电阻Rs(其大小取决于电表的最大负载电流)转换为电压,然后接入MSP430C323的A0、A5。

8

L

线

路用N户4.7MAVcc

DVccA1SVcc+2.5A033KMSP430C323

-2.5A4

AVssLM385A5RSDVss

图4电压电流采集电路原理设计

23.5串行EPROM接口

作为计量的仪表有许多数据如电流电压的系数、分时计费表、累计电能等是变动的或可以通过正常手段修改的,但是不能因系统中的干扰而改写,更不能因

2停电等事件而丢失。

因此仪表必须提供满足上述要求的存储手段,而串行EPROM是当前仪表设计中最合适的器件。

本设计中选择FM24C16来实现这种功能。

FM24C16有读和写两种操作状态,它可以以总线速度进行写操作,无延时,

2可以承受100亿此读写或者说比一般EPROM能承受高一万倍的写操作。

2MSP430X3XX系列不具有IC接口,需要利用通用I/O引脚和相应的软件来模拟这种接口的功能。

本设计中这部分电路如图5所示。

9

+2.5V

RpRp

P0.6

P0.7

MSP430

SCLSDA

A2

FM24C16A1

A0

VccVssVDDVSS

+2.5V-2.5V+2.5V-2.5V

图5MSP430与FM24C16的接口电路

3.6串行通信接口的实现

由于MSP430X3XX的部分廉价型号(如MSP430C323)中没有专用串行通信接口,需要采用替代的方法形成。

在3.2节中己指出可以利用8位定时器/计数器和P0.1和P0.2共同实现异步串行通信功能。

在这种应用中将定时器/计数器用作波特率发生器,将P0.1和P0.2分别用作异步串行通信的RXD和TXD引脚。

该串行通道可实现以下的功能:

(1)即使在低功耗方式下亦可自动检测接收数据的起始位;

(2)提供75—115200的波特率发生功能;

(3)硬件锁存TXD和RXD数据。

3.7红外接口的设计

红外通信以红外线作为介质来传送数据信息,由红外接收器和红外发射器来

[11]完成信号的无线收发。

在发射端,对发送的数字信号经适当的编码和调制后,送入电光变换电路,驱动红外二极管发射红外光脉冲,在接收端,红外接收器对收到的红外信号进行光电变换,并进行解调和译码后,恢复出原信号。

红外发射

10

电路由调制电路、驱动电路及红外发射器件组成,红外接收电路由红外接收器件、前置放大电路、解调电路等构成。

电能表自动抄表系统红外通信主要有三部分构成,分别是电能表、手持抄录器和上位计算机管理系统。

电能表实时从电网中采集、计算和存储。

在手持抄录器的控制下可通过红外通信端口将数据发送至红外抄录器中。

此外在有安全措施的前提下,手持抄录器也可通过红外通信修改电能表的仪表系数和实时时钟等常数。

手持抄录器可将采集的电能表数据传输给供电部门的计算机管理系统。

串行通信通道的TXD信号的脉冲宽度是由波特率确定的,如果不经过调制而直接驱动红外发光二极管,抗干扰能力较差。

因此需要将数据“载”在频率较高

[9]的载波信号上进行调制。

按照《多功能电能表通信规约》(DL/L645-1997)规定,采用脉冲调幅调制方式,载波频率应为38kHz?

1kHz。

D1VCCR3

100SE303

PIC-12043

R1

1KU2RXD(P0.1)BG1

TXD(P0.2)VoutR2

1KR4123VCCGNDBG2TP0.0100VccC110uF/16V

图6电能表红外通信接口电路的设计

红外发射是利用串行数据发送引脚TXD(P0.2)控制驱动三极管BGl进行二进制数据“0”和“1”的传输,而载波则是利用通用定时器/口从TP0.0引脚输出一个频率为38.4KHz的方波作为载波。

因为串联的2个三极管为PNP型的,所以只有在TXD和载波均为低电平时才能同时导通并使发光二极管发光。

得到的波形如图7所示。

图中第一行为P0.2

11

引脚的波形;第二行为TP0.0引脚的波形;第三行为BG1发射极的波形,当TXD数据为0时有连续的脉冲串,而TXD数据为1时无脉冲出现。

TXD串口信号数据“0”位数据“1”位

38.4KHZ„„„„„„

„„„发射器D1信

号调制后发射

数据“0”时高频发射数据“1”时截止

图7调制波形的获取

红外接收是利用红接收管PIC12034将手持红外抄录器发出的红外信号加以解调,连续脉冲串解调后输出低电平表示数据0,而没收到脉冲串则输出高电平表示数据1。

把解调得到的数据送到串行数据接收引脚RXD(P0.1)由串行口进行处理。

4电能表的软件设计

4.1电能表的主流程与模块化程序设计

MSP430C323的软件设计需要实现电能的采集、计算、计费、显示、通信等功能。

由于电表实现连续计量,因此主程序是一

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 小学教育 > 其它课程

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2