220KV变压器毕业设计40修改41.docx

上传人:b****0 文档编号:9980754 上传时间:2023-05-22 格式:DOCX 页数:49 大小:577.73KB
下载 相关 举报
220KV变压器毕业设计40修改41.docx_第1页
第1页 / 共49页
220KV变压器毕业设计40修改41.docx_第2页
第2页 / 共49页
220KV变压器毕业设计40修改41.docx_第3页
第3页 / 共49页
220KV变压器毕业设计40修改41.docx_第4页
第4页 / 共49页
220KV变压器毕业设计40修改41.docx_第5页
第5页 / 共49页
220KV变压器毕业设计40修改41.docx_第6页
第6页 / 共49页
220KV变压器毕业设计40修改41.docx_第7页
第7页 / 共49页
220KV变压器毕业设计40修改41.docx_第8页
第8页 / 共49页
220KV变压器毕业设计40修改41.docx_第9页
第9页 / 共49页
220KV变压器毕业设计40修改41.docx_第10页
第10页 / 共49页
220KV变压器毕业设计40修改41.docx_第11页
第11页 / 共49页
220KV变压器毕业设计40修改41.docx_第12页
第12页 / 共49页
220KV变压器毕业设计40修改41.docx_第13页
第13页 / 共49页
220KV变压器毕业设计40修改41.docx_第14页
第14页 / 共49页
220KV变压器毕业设计40修改41.docx_第15页
第15页 / 共49页
220KV变压器毕业设计40修改41.docx_第16页
第16页 / 共49页
220KV变压器毕业设计40修改41.docx_第17页
第17页 / 共49页
220KV变压器毕业设计40修改41.docx_第18页
第18页 / 共49页
220KV变压器毕业设计40修改41.docx_第19页
第19页 / 共49页
220KV变压器毕业设计40修改41.docx_第20页
第20页 / 共49页
亲,该文档总共49页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

220KV变压器毕业设计40修改41.docx

《220KV变压器毕业设计40修改41.docx》由会员分享,可在线阅读,更多相关《220KV变压器毕业设计40修改41.docx(49页珍藏版)》请在冰点文库上搜索。

220KV变压器毕业设计40修改41.docx

220KV变压器毕业设计40修改41

(此文档为word格式,下载后您可任意编辑修改!

摘要

随着我国科学技术的发展,特别是计算机技术的进步,电力系统对变电站的更要求也越来越高。

本设计讨论的是220KV变电站电气部分的设计。

首先对原始资料进行分析,选择主变压器,在此基础上进行主接线设计,再进行短路计算,选择设备,然后进行防雷接地以及保护、配电装置设计。

关键字:

变电站;短路计算;设备选择;防雷保护。

引言

电力事业的日益发展紧系着国计民生。

它的发展水平和电气的程度,是衡量一个国家的国民经济发展水平及其社会现代化水平高低的一个重要标志。

全面建设小康社会的宏伟目标,从一定意义上讲,实现这个宏伟目标,需要强有力的电力支撑,需要安全可靠的电力供应,需要优质高效的电力服务。

本毕业设计是在完成本专业所有课程后进行的综合能力考核。

通过对原始资料的分析、主接线的选择及比较、短路电流的计算、主要电器设备的选择及校验、线路图的绘制以及避雷器针高度的选择等步骤、最终确定了220kV变电站所需的主要电器设备、主接线图以及变电站防雷保护方案。

通过本次毕业设计,达到了巩固“发电厂电气部分”课程的理论知识,掌握变电站电气部分和防雷保护设计的基本方法,体验和巩固我们所学的专业基础和专业知识的水平和能力,培养我们运用所学知识去分析和解决与本专业相关的实际问题,培养我们独立分析和解决问题的能力的目的。

务求使我们更加熟悉电气主接线,电力系统的潮流及短路计算以及各种电力手册及其电力专业工具书的使用,掌握变电站电气部分和防雷保护设计的基本方法,并在设计中增新、拓宽。

提高专业知识,拓宽、提高专业知识,完善知识结构,开发创造型思维,提高专业技术水平和管理,增强计算机应用能力,成为一专多能的高层次复合型人才。

任务书

本次设计任务

新建一座220kV区域变电所。

该所建成后与110kV和220kV电网相连,并供给近区用户供电。

原始资料

该所有220kV、110kV和10kV三个电压等级。

220kV出线6回(其中备用2回),110kV出线10回(其中备用2回),10kV出线12回(其中备用2回)。

110kV侧有两回出线供给大型厂用,其容量为80000kVA,其他作为一些地区变电所进线,其他地区变电所进线总负荷为100MVA。

10kV侧总负荷为35000kVA,ⅠⅡ类用户占60%,最大一回出线负荷为2500kVA,最大负荷与最小负荷之比为0.65。

本站选址条件较好,土地较为平整充裕,年平均最高温度40℃,年平均最低气温-2℃,地震强度6级以下。

第一章主变压器的选择

在发电厂和变电站中,用来向电力系统或用户输送功率的变压器,称为主变压器。

1.1主变压器的选择原则

1.1.1主变压器容量和台数的选择原则

1、主变容量选择应考虑:

(1)主变容量一般按变电所建成后5~10年的规划负荷来进行选择,并适当考虑远期10~20年的负荷发展。

(2)根据变电所所带负荷的性质和电网结构来确定主变的容量。

对于有重要负荷的变电所,应考虑一台主变停运时,其余变压器容量在计及过负荷能力后的允许时间内,保证用户的Ⅰ级和Ⅱ级负荷,对于一般变电所,当一台主变停运时,其他变压器容量应能保证全部负荷的60%。

(3)同级电压的单台降压变压器容量的级别不宜太多。

应从全网出发,推行系列化、标准化。

2.主变台数的考虑原则:

(1)对大城市的一次变,在中、低压侧构成环网的情况下,装两台主变为宜。

(2)对地区性孤立的一次变或大型的工业专用变电所,设计时应考虑装三台的可能性。

(3)对规划只装两台的主变的变电所,其主变基础宜大于变压器容量的1-2级设计,以便负荷发展时更换主变。

1.1.2主变压器容量的选择

台数选择又上分析可知应选两台主变。

主变压器容量Se的确定:

Smax=80+100+35=215MVA

同时率取0.85

容量确定:

Se=0.7×0.85×Smax×e5*0.05

Se=0.7×0.85×215×e0.25≈164.3MVA

1.1.3主变压器型式的选择

选择主变压器,需考虑如下原则:

(1)当不受运输条件限制时,在330KV及以下的发电厂和变电站,均应选用三相变压器。

(2)当发电厂与系统连接的电压为500KV时,已经技术经济比较后,确定选用三相变压器、两台50%容量三相变压器或单相变压器组。

对于单机容量为300MW、并直接升到500KV的,宜选用三相变压器。

(3)对于500KV变电所,除需考虑运输条件外,尚应根据所供负荷和系统情况,分析一台(或一组)变压器故障或停电检修时对系统的影响。

尤其在建所初期,若主变压器为一组时,当一台单相变压器故障,会使整组变压器退出,造成全网停电;如用总容量相同的多台三相变压器,则不会造成所停电。

为此要经过经济论证,来确定选用单相变压器还是三相变压器。

在发电厂或变电站还要根据可靠性、灵活性、经济性等,确定是否需要备用相。

1.1.4绕组数量和连接形式的选择

具有三种电压等级的变电所,如各侧的功率均达到主变压器额定容量的15%以上,或低压侧虽无负荷,但需要装设无功补偿设备时,主变压器一般选用三绕组变压器[5]。

1.2主变压器选择结果

查《电力工程电气设备手册:

电气一次部分》,选定变压器的容量为180MVA。

由于升压变压器有两个电压等级,所以这里选择三绕组变压器,查《大型主要技术参数如下:

额定容量:

180000(KVA)

额定电压:

高压—220±2×2.5%;中压—121;低压—10.5(KV)

连接组标号:

YNyn0d11

空载损耗:

178(KW)

空载电流(%):

0.7

1.3所用变选择

1.选择原则:

所用电负荷按1‰-5‰变电所容量计,这里按照主变容量的2‰计算,设置2台所用变相互备用。

2.所用变容量计算:

S=2‰Se=150500×2‰=301KVA

所用变压器参数:

型号:

S9—31510

U1e=6.3±5%(KV)U2e=0.4(KV)

连接组别:

Y,yn0

空载损耗:

0.70(KW)

阻抗电压:

4(%)

空载电流:

1.5(%)

第二章电气主接线的设计

2.1主接线概述

电气主接线是由电气设备通过连接线,按其功能要求组成接受和分配电能的电路,成为传输强电流、高电压的网络。

用规定的电气设备图形符号和文字符号并按工作顺序排列,详细地表示电气设备或成套装置的全部基本组成和连接关系的单线接线图。

主接线代表了发电厂或变电站电气部分的主体结构,是电力系统网络结构的重要组成部分,直接影响运行的可靠性、灵活性并对电器选择、配电装置布置、继电保护、自动装置和控制方式的拟定都有决定性的关系。

2.2主接线设计原则

电气主接线的设计是发电厂或变电站电气设计的主题。

它与电力系统、电厂动能参数、基本原始资料以及电厂运行可靠性、经济性的要求等密切相关,并对电气设备选择和布置、继电保护和控制方式等都有较大的影响。

因此,主接线设计,必须结合电力系统和发电厂和变电站的具体情况,全面分析有关影响因素,正确处理它们之间的关系,经过技术、经济比较,合理地选择主接线方案。

电气主接线设计的基本原则是以设计任务为依据,以国家经济建设的方针、政策、技术规定、标准为准绳,结合工程实际情况,在保证供电可靠、调度灵活、满足各项技术要求的前提下,兼顾运行、维护方便,尽可能地节省投资,就近取材,力争设备元件和设计的先进性与可靠性,坚持可靠、先进、实用、经济、美观的原则[8]。

2.3主接线的选择

根据主接线方式,并结合待建变电站的实际,现对各电压等级采取的主接线方式作如下分述:

一、220KV主接线形式的选择

拟定双母线接线方式或双母带旁路接线方式。

两种方式比较:

220kV出线6回,而双母接线使用范围是110~220KV出线数为5回及以上时。

满足主接线的要求。

且具备供电可靠、调度灵活、扩建方便等特点。

220kV出线6回,而由于本回路为重要负荷停电对其影响很大,因而选用双母带旁路接线方式。

双母线带旁路母线,用旁路断路器替代检修中的回路断路器工作,使该回路不致停电。

这样多装了价高的断路器和隔离开关,增加了投资,然而这对于接于旁路母线的线路回数较多,并且对供电可靠性有特殊需要的场合是十分必要的。

综合所述,220KV电压等级采用侧双母线带旁路接线方式,220KV主接线形式如下所示:

(图2-4)

 

图2-4

二、110KV主接线形式选择

拟定用双母线接线方式或双母带旁路接线方式。

两种方式比较:

110kV出线10回(其中备用2回),110kV侧有两回出线供给大型厂用,其容量为80000kVA,其他作为一些地区变电所进线,其他地区变电所进线总负荷为100MVA。

根据条件选择双母接线方式。

110kV出线10回(其中备用2回),母线故障后能声速恢复供电,母线或母线设备检修时不中断对得要用户的供电,因此要求其主接线具有较高的可靠性和快速的恢复送电能力,故采用双母线接线方式。

同时110KV侧出线回路数较多,也需加装专用旁路开这样,110KV电压等级的接线方式为双母线带旁路的接线方式(专用旁路断路器)。

但多装了价高的断路器和隔离开关,增加了投资。

综上比较,按母线的选用情况将选用双母线的接线方式。

如下图2-5所示。

图2-5

三、10KV接线形式选择

拟定单母分段接线或双母线的接线方式。

两种方式比较:

10kV出线12回(其中备用2回),10kV侧总负荷为35000kVA,Ⅰ、Ⅱ类用户占60%,最大一回出线负荷为2500kVA,最大负荷与最小负荷之比为0.65。

选择单母分段接线方式。

由于10KV所传输的功率不大,而双母线接线所需设备较多,投资较大,故从经济角度考虑,确定10KV采用单母线分段的主接线方式。

具体接线图如2-6所示:

 

图2-6

综上所述,待建变电站的主接线方式为:

220KV采用双母线带旁路的接线方式,110KV采用侧双母接线方式,10KV采用单母线分段的接线方式。

图2-7

第三章220KV变电站电气部分短路计算

系统阻抗:

220KV侧电源近似为无穷大系统A,归算至本所220KV母线侧阻抗为0.015(Sj=100MVA),110KV侧电源容量为500MVA,归算至本所110KV母线侧阻抗为0.36(Sj=100MVA)。

变压器型号为SFPS7—180000220。

图3-1系统图的等值电路

3.1变压器的各绕组电抗标幺值计算

设SB=100MVA,UB=Uav

3.210KV侧短路计算

f(3)-1短路时,示意图如下:

图3-2f(3)-1短路的等值电路图

=0.018

=-0.241

三角形变为星形:

 

图3-3f(3)-1短路的等值电路图

再次简化

因为

所以:

=0.015+0.042

=0.057

示意图如下所示:

图3-4f(3)-1短路的等值电路图

再做三角形变换

示意图如下:

图3-5f(3)-1短路的等值电路图

计算电抗:

汽轮发电机计算曲线,0s时标么值为

IB0*=0.390

因为A电源为无穷大系统所以提供的短路电流为:

所以短路电流有名值为[11]:

冲击电流:

短路容量:

3.3220KV侧短路计算

f(3)-2短路时,示意图如下图所示。

图3-6f(3)-2短路的等值电路图

图3-7f(3)-2短路的等值电路图

XB*=XT*=XBS*=0.039+0.36=0.399

图3-8f(3)-2短路的等值电路图

A电源(无穷大系统)的短路电流为:

 

查汽轮发电机计算曲线有

IB0=0.512

所以短路电流有名值为

冲击电流[11]:

短路容量:

3.4110KV侧短路计算

f(3)-3短路时

图3-9f(3)-3短路的等值电路图

XA*=XT*+XAS*=0.039+0.015=0.054

上图简化图如下:

图3-10f(3)-3短路的等值电路图

A为无穷大系统所以有

查汽轮发电机的计算曲线得

IB0=0.570

所以短路电流有名值为

冲击电流:

短路容量:

短路计算结果列表于下:

表3-1短路计算成果表

短路点

基准电压

短路电流

冲击电流

短路容量S

(K)

(KA)

(KA)

(MVA)

f-1

10.5

76.154

194.193

384.977

f-2

230

17.376

44.309

6922.106

f-3

115

10.778

27.484

2146.825

第四章导体和电气设备的选择

正确选择电气设备是电气主接线和配电装置达到安全、经济运行的重要条件。

在进行电器选择时,应根据工程实际情况,在保证安全、可靠的前提下,积极而稳妥地采用新技术,并注意节省投资,选择合适的电气设备。

尽管电力系统中各种电器的作用和工作条件并不一样,具体选择方法也不完全相同,但对它们的基本要求确是一致的。

电气设备要可靠地工作,必须按正常工作条件进行选择,并按短路状态来校验动、热稳定性。

本设计,电气设备的选择包括:

断路器和隔离开关的选择,电流、电压互感器的选择、避雷器的选择,导线的选择。

气设备选择的一般原则:

应满足正常运行、检修、断路和过电压情况下的要求,并考虑远景发展的需要。

应按当地环境条件校验;

应力求技术先进与经济合理;

选择导体时应尽量减少品种;

扩建工程应尽量使新老电气设备型号一致;

选用新产品,均应具有可靠的实验数据,并经正式鉴定合格。

选择的高压电器,应能在长期工作条件下和发生过电压、过电流的情况下保持正常运行。

同时,所选择导线和电气设备应按短路条件下进行动、热稳定校验。

4.1断路器和隔离开关的选择

断路器的选择,除满足各项技术条件和环境条件外,还应考虑到要便于安装调试和运行维护,并经济技术方面都比较后才能确定。

根据目前我国断路器的生产情况,电压等级在10KV~220KV的电网一般选用少油断路器,而当少油断路器不能满足要求时,可以选用SF6断路器。

断路器选择的具体技术条件如下:

额定电压校验:

UN≥UNs(4-1)

额定电流校验:

IN>Imax(4-2)开断电流:

INbr>I″(4-3)

动稳定:

ies>ish(4-4)

热稳定:

It2t>Qk(4-5)

4.1.1220KV出线、主变侧

(1)、主变断路器的选择与校验

流过断路器的最大持续工作电流

具体选择及校验过程如下:

1.额定电压选择:

UN≥UNs=220KV

2.额定电流选择:

IN>Imax=496.01A

3.开断电流选择:

INbr>I″=17.376KA

表4-2SW6—2201200技术参数表

型号

额定电压KV

额定

电流A

断流容

量MVA

额定断流

量KA

极限通过

电流KA

热稳定

电流KA

固有分

闸时间S

峰值

4S

SW6-2201200

220

1200

6000

21

55

21

0.04

4.热稳定校验:

It2t>Qk

It2t=212×4=1764[(KA)2S]

电弧持续时间取0.06S,热稳定时间为:

tk=1.5+0.04+0.06=1.6S

查计算电抗并计算短路电流为

所以,It2t>Qk满足热稳校验。

5.动稳定校验:

ies=55kA>ish=44.309KA满足校验要求

表4-3具体参数表

计算数据

SW6-2201200

UNs220KV

UN220KV

Imax496.01A

IN1200A

I″17.376KA

INbr21KA

ish44.309KA

INcl55KA

QK120.252[(KA)2s]

It2t212×4=1764[(KA)2s]

ish44.309KA

ies55KA

由表可知,所选断路器满足要求。

(2)、出线断路器的选择与校验

由上表可知SW6-2201200同样满足出线断路器的选择。

其动稳定、热稳定计算与主变侧相同。

具体参数如下表所示:

表4-4具体参数表

计算数据

SW6-2201200

UNs220KV

UN220KV

Imax944.88A

IN1200A

I″17.376KA

INbr21KA

ish44.309KA

INcl55KA

QK120.252[(KA)2s]

It2t212×4=1764[(KA)2s]

ish44.309KA

ies55KA

(3)、主变侧隔离开关的选择及校验过程如下:

1.额定电压选择:

UN≥UNs=220KV

2.额定电流选择:

IN>Imax=496.01A

3.极限通过电流选择:

ies>ish=44.309KA

表4-5GW6—220D1000—80技术参数表

型号

额定

电压

KV

额定

电流

A

极限通过电流KA

热稳定

电流

KA

峰值

4S

GW6—220D1000—80

220

1000

80

23.7

4.热稳定校验:

It2t>Qk

It2t=23.72×4=2246.76[(KA)2S]

所以,It2t>Qk满足热稳校验。

5.动稳定校验:

ies=80KA>ish=44.309kA满足校验要求。

表4-6具体参数表

计算数据

GW4-220D1000—80

UNs220KV

UN220KV

Imax496.01A

IN1000A

QK115.743[(KA)2S]

It2t23.72×4=2246.76[(KA)2S]

ish44.309KA

ies80KA

由表可知,所选隔离开关各项均满足要求。

(4)、出线侧隔离开关的选择及校验过程如下:

由上表可知GW6—220D1000—80同样满足出线隔离开关的选择。

其动稳定、热稳定计算与主变侧相同。

表4-7具体参数表

计算数据

GW4-220D1000—80

UNs220KV

UN220KV

Imax944.88A

IN1000A

QK115.743[(KA)2S]

It2t23.72×4=2246.76[(KA)2S]

ish44.309KA

ies80KA

由表可知,所选隔离开关各项均满足要求。

4.1.2主变110KV侧

断路器的选择与校验

流过断路器的最大持续工作电流

具体选择及校验过程如下:

1.额定电压选择:

UN≥UNs=110KV

2.额定电流选择:

IN>Imax=992.02A

3.开断电流选择:

INbr>I″=10.778KA

初选SW4—1101000技术数据如下表所示:

表4-8SW4—1101000技术数据

型号

额定电压KV

额定电流A

断流容量MVA

额定断流量KA

极限通过电流KA

热稳定电流KA

固有分闸时间S

峰值

5S

SW4—1101000

110

1000

3500

18.4

55

21

0.06

4.热稳定校验:

It2t>Qk

It2t=212×5=2205[(KA)2S]

查转移电抗并计算短路电流

所以,It2t>Qk满足热稳校验。

5.动稳定校验:

ies=55kA>ish=27.484KA满足校验要求。

表4-9具体参数表

计算数据

SW4-1101000

UNs110KV

UN110KV

Imax992.02A

IN1000A

I″10.778KA

INbr18.4KA

ish27.484KA

INcl55KA

QK186.747[(KA)2S]

It2t212×5=2205[(KA)2S]

ish44.309KA

ies55KA

由表可知,所选断路器满足要求。

隔离开关的选择及校验过程如下:

1.额定电压选择:

UN≥UNs=110KV

2.额定电流选择:

IN>Imax=992.02A

3.极限通过电流选择:

ies>ish=27.484KA

表4-10GW4—110D1000—80技术数据

型号

额定电压KV

额定电流A

极限通过电流KA

热稳定电流KA

峰值

4S

GW4—110D1000—80

110

1000

80

21.5

4.热稳定校验:

It2t>Qk

It2t=21.52×5=2311.25[(KA)2s]

所以,It2t>Qk满足热稳校验

5.动稳定校验:

ies=55kA>ish=27.484kA满足校验要求

具体参数如下表

表4-11具体参数

计算数据

GW4-110D1000—80

UNs110KV

UN110KV

Imax992.02A

IN1000A

QK186.747[(KA)2S]

It2t21.52×5=2311.25[(KA)2S]

ish27.484KA

ies55KA

由表可知,所选隔离开关各项均满足要求。

110KV母联断路器及隔离开关的最大工作条件与变中110KV侧应满足相同的要求,故选用相同设备。

即选用SW4-1101000型少油断路器和GW4-110D1000—80型隔离开关。

4.1.310KV断路器隔离开关的选择

(一)、限流电抗器的选择

 

设将电抗器后的短路电流限制到I″=20KA

(1)初选型号

根据以上条件初选XKK—10—4000—4

电抗器标么值:

X*∑=其中:

KA

(2)选择电抗值

电源至电抗器前的系统标么值:

曾运用4%的电抗器,计算结果表明不满足动稳定要求,故改为

表4-12XKK—10—4000—12技术数据

型号

额定电压

KV

额定电流

A

电抗率

动稳定电流峰值KA

热稳定电流KA

固有分闸时间S

4S

SW4—10—4000

10KV

4000

12%

204

80

0.17

(3)电压损失和残压校验

当所选电抗值大于计算值时,应重算电抗器后短路电流,以供残压校验。

为计算短路电流,先计算电抗标么值为

其中tk=2

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 医药卫生 > 基础医学

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2