ImageVerifierCode 换一换
格式:DOCX , 页数:31 ,大小:125.75KB ,
资源ID:17302544      下载积分:5 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bingdoc.com/d-17302544.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(正戊烷换热器.docx)为本站会员(b****0)主动上传,冰点文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰点文库(发送邮件至service@bingdoc.com或直接QQ联系客服),我们立即给予删除!

正戊烷换热器.docx

1、正戊烷换热器标准系列化管壳式换热器的设计计算步骤(1)了解换热流体的物理化学性质和腐蚀性能(2)计算传热量,并确定第二种流体的流量(3)确定流体进入的空间(4)计算流体的定性温度,确定流体的物性数据(5)计算有效平均温度差,一般先按逆流计算,然后再校核(6)选取经验传热系数(7)计算传热面积(8)查换热器标准系列,获取其基本参数(9)校核传热系数,包括管程、壳程对流给热系数的计算。假如核算的K与原选的经验值相差不大,就不再进行校核。若相差较大,则需重复(6)以下步骤(10)校核有效平均温度差(11)校核传热面积(12)计算流体流动阻力。若阻力超过允许值,则需调整设计。非标准系列化列管式换热器的

2、设计计算步骤(1)了解换热流体的物理化学性质和腐蚀性能(2)计算传热量,并确定第二种流体的流量(3)确定流体进入的空间(4)计算流体的定性温度,确定流体的物性数据(5)计算有效平均温度差,一般先按逆流计算,然后再校核(6)选取管径和管内流速(7)计算传热系数,包括管程和壳程的对流传热系数,由于壳程对流传热系数与壳径、管束等结构有关,因此,一般先假定一个壳程传热系数,以计算K,然后再校核(8)初估传热面积,考虑安全因素和初估性质,常采用实际传热面积为计算传热面积值的1.151.25倍(9)选取管长(10)计算管数(11)校核管内流速,确定管程数(12)画出排管图,确定壳径和壳程挡板形式及数量等(

3、13)校核壳程对流传热系数(14)校核平均温度差(15)校核传热面积(16)计算流体流动阻力。若阻力超过允许值,则需调整设计。正戊烷立式管壳式冷凝器的设计(标准系列)一、设计任务1.处理能力:2.376104t/a正戊烷;2.设备形式:立式列管式冷凝器。二、操作条件1.正戊烷:冷凝温度51.7,冷凝液于饱和温度下离开冷凝器;2.冷却介质:为井水,流量70000kg/h,入口温度32;3.允许压降:不大于105Pa;4.每天按330天,每天按24小时连续运行。三、设计要求选择适宜的列管式换热器并进行核算。附:正戊烷立式管壳式冷却器的设计工艺计算书(标准系列)正戊烷立式管壳式冷凝器的设计工艺计算书

4、(标准系列)本设计的工艺计算如下:此为一侧流体为恒温的列管式换热器的设计。1.确定流体流动空间冷却水走管程,正戊烷走壳程,有利于正戊烷的散热和冷凝。2.计算流体的定性温度,确定流体的物性数据正戊烷液体在定性温度(51.7)下的物性数据(查化工原理附录)井水的定性温度:入口温度为,出口温度为式中井水的定性温度为两流体的温差,故选固定管板式换热器两流体在定性温度下的物性数据如下物性流体温度密度kg/m3粘度mPas比热容kJ/(kg)导热系数W/(m)正戊烷51.75960.182.340.13井水35.67993.70.7174.1740.6273.计算热负荷4.计算有效平均温度差逆流温差5.选

5、取经验传热系数K值根据管程走井水,壳程走正戊烷,总传热系数,现暂取。6.估算换热面积7.初选换热器规格立式固定管板式换热器的规格如下公称直径D500mm公称换热面积S40m2管程数Np.2管数n.172管长L.3.0m管子直径.管子排列方式.正三角形换热器的实际换热面积该换热器所要求的总传热系数8.核算总传热系数(1)计算管程对流传热系数(湍流)故(2)计算壳程对流传热系数因为立式管壳式换热器,壳程为正戊烷饱和蒸汽冷凝为饱和液体后离开换热器,故可按蒸汽在垂直管外冷凝的计算公式计算现假设管外壁温,则冷凝液膜的平均温度为,这与其饱和温度很接近,故在平均膜温45.85下的物性可沿用饱和温度51.7下

6、的数据,在层流下:(3)确定污垢热阻(4)总传热系数所选换热器的安全系数为表明该换热器的传热面积裕度符合要求。(5)核算壁温与冷凝液流型核算壁温时,一般忽略管壁热阻,按以下近似计算公式计算,这与假设相差不大,可以接受。核算流型冷凝负荷(符合层流假设)9.计算压强降(1)计算管程压降(Ft结垢校正系数,Np管程数,Ns壳程数)取碳钢的管壁粗糙度为0.1mm,则,而,于是对的管子有(2)计算壳程压力降壳程为恒温恒压蒸汽冷凝,可忽略压降。由此可知,所选换热器是合适的。列管式换热器的设计列管式换热器的应用已有很悠久的历史。现在,它被当作一种传统的标准换热设备在很多工业部门中大量使用,尤其在化工、石油、

7、能源设备等部门所使用的换热设备中,列管式换热器仍处于主导地位。同时板式换热器也已成为高效、紧凑的换热设备,大量地应用于工业中。为此本章对这两类换热器的工艺设计进行介绍。列管式换热器的设计资料较完善,已有系列化标准。目前我国列管式换热器的设计、制造、检验、验收按“钢制管壳式(即列管式)换热器”(GB151)标准执行。 列管式换热器的设计和分析包括热力设计、流动设计、结构设计以及强度设计。其中以热力设计最为重要。不仅在设计一台新的换热器时需要进行热力设计,而且对于已生产出来的,甚至已投人使用的换热器在检验它是否满足使用要求对,均需进行这方面的工作。 热力设计指的是根据使用单位提出的基本要求,合理地

8、选择运行参数,并根据传热学的知识进行传热计算。 流动设计主要是计算压降,其目的就是为换热器的辅助设备例如泵的选择做准备。当然,热力设计和流动设计两者是密切关联的,特别是进行热力计算时常需从流动设计中获取某些参数。 结构设计指的是根据传热面积的大小计算其主要零部件的尺寸,例如管子的直径、长度、根数、壳体的直径、折流板的长度和数目、隔板的数目及布置以及连接管的尺寸,等等。在某些情况下还需对换热器的主要零部件特别是受压部件做应力计算,并校核其强度。对于在高温高压下工作的换热器,更不能忽视这方面的工作。这是保证安全生产的前提。在做强度计算时,应尽量采用国产的标准材料和部件,根据我国压力容器安全技术规定

9、进行计算或校核(该部分内容属设备计算,此处从略)。 1.1设计方案的确定 1.1.1换热器类型的选择 (1)固定管板式换热器 (2)浮头式换热器 (3)填料函式换热器 (4)U型管换热器 1.1.2 流动空间的选择 在管壳式换热器的计算中,首先需决定何种流体走管程,何种流体走壳程,这需遵循一些一般原则。 应尽量提高两侧传热系数较小的一个,使传热面两侧的传热系数接近。 在运行温度较高的换热器中,应尽量减少热量损失,而对于一些制冷装置,应尽量减少其冷量损失。 管、壳程的决定应做到便于清洗除垢和修理,以保证运行的可靠性。 应减小管子和壳体因受热不同而产生的热应力。从这个角度来说,顺流式就优于逆流式,

10、因为顺流式进出口端的温度比较平均,不像逆流式那样,热、冷流体的高温部分均集中于一端,低温部分集中于另一端,易于因两端胀缩不同而产生热应力。 对于有毒的介质或气相介质,必使其不泄漏,应特别注意其密封,密封不仅要可靠,而且还应要求方便及简单。 应尽量避免采用贵金属,以降低成本。 以上这些原则有些是相互矛盾的,所以在具体设计时应综合考虑,决定哪一种流体走管程,哪一种流体走壳程。 (1)宜于通入管内空间的流体 不清洁的流体 因为在管内空间得到较高的流速并不困难,而流速高,悬浮物不易沉积,且管内空间也便于清洗。 体积小的流体 因为管内空间的流动截面往往比管外空间的截面小,流体易于获得必要的理想流速,而且

11、也便于做成多程流动。 有压力的流体 因为管子承压能力强,而且还简化了壳体密封的要求。 腐蚀性强的流体 因为只有管子及管箱才需用耐腐蚀材料,而壳体及管外空间的所有零件均可用普通材料制造,所以造价可以降低。此外,在管内空间装设保护用的衬里或覆盖层也比较方便,并容易检查。 与外界温差大的流体 因为可以减少热量的逸散。 (2)宜于通入管间空间的流体 当两流体温度相差较大时,值大的流体走管间,这样可以减少管壁与壳壁间的温度差,因而也减少了管束与壳体间的相对伸长,故温差应力可以降低。 若两流体给热性能相差较大时,值小的流体走管间,此时可以用翅片管来平衡传热面两侧的给热条件,使之相互接近。 和蒸汽 对流速和

12、清理无甚要求,并易于排除冷凝液。 粘度大的流体 管间的流动截面和方向都在不断变化,在低雷诺数下,管外给热系数比管内的大。 泄漏后危险性大的流体 可以减少泄漏机会,以保安全。 此外,易析出结晶、沉渣、淤泥以及其他沉淀物的流体,最好通入比较更容易进行机械清洗的空间。在管壳式换热器中,一般易清洗的是管内空间。但在U形管、浮头式换热器中易清洗的都是管外空间。 1.1.3 流速的确定 当流体不发生相变时,介质的流速高,换热强度大,从而可使换热面积减少、结构紧凑。成本降低,一般也可抑止污垢的产生。但流速大也会带来一些不利的影响,诸如压降P增加,泵功率增大,且加剧了对传热面的冲刷。换热器常用流速的范围见表2

13、-2和表2-3。 表2-2 换热器常用流速的范围 ? 介质 循环水 新鲜水 一般液体 易结垢液体 低粘度油 高粘度油 气体 流速 管程流速,m/s1.02.00.81.50.531.00.81.80.51.5530壳程流速,m/s0.51.50.51.50.21.50.50.41.00.30.8215表2-3 列管式换热器易燃、易爆液体和气体允许的安全流速 液体名称 乙醚、二氧化碳、苯 甲醇、乙醇、汽油 丙酮 氢气 安全流速,m/s123管子布置方式 正三角形排列结构紧凑;正方形排列便于机械清洗;同心圆排列用于小壳径换热器,外圆管布管均匀,结构更为紧凑。我国换热器系列中,固定管板式多采用正三角

14、形排列;浮头式则以正方形错列排列居多,也有正三角形排列。 对于多管程换热器,常采用组合排列方式。每程内都采用正三角形排列,而在各程之间为了便于安装隔板,采用正方形排列方式。 管板上两管子中心的距离a称为管心距(或管间距)。管心距取决于管板的强度、清洗管子外表面时所需的空隙、管子在管板上的固定方法等。当管子采用焊接方法固定时,相邻两根管的焊缝太近,会相互受到影响,使焊接质量不易保证。而常用胀接法固定时,过小的管心距会造成管板在胀接时由于挤压力的作用发生变形,失去管子与管板之间的连接力。 根据生产实际经验,当管子外径为d0时,管心距a一般采用: 焊接法? a = 1.25 do;胀接法? a =

15、(1.301.50)do; 小直径的管子? a do+10mm; 最外层管中心至壳体内表面的距离d0+10mm; 管子材料常用的为碳钢、低合金钢、不锈钢、铜、铜镍合金、铝合金等。应根据工作压力。温度和介质腐蚀性等条件决定。此外还有一些非金属材料,如石墨、陶瓷、聚四氟乙烯等亦有采用。在设计和制造换热器时,正确选用材料很重要。既要满足工艺条件的要求,又要经济。对化工设备而言,由于各部分可采用不同材料,应注意由于不同种类的金属接触而产生的电化学腐蚀作用。 (2) 管板 管板的作用是将受热管束连接在一起,并将管程和壳程的流体分隔开来。 管板与管子的连接可胀接或焊接。胀接法是利用胀管器将管子扩胀,产生显

16、著的塑性变形,靠管子与管板间的挤压力达到密封紧固的目的。胀接法一般用在管子为碳素钢,管板为碳素钢或低合金钢,设计压力不超过4 MPa,设计温度不超过350的场合。焊接法在高温高压条件下更能保证接头的严密性。 管板与壳体的连接有可拆连接和不可拆连接两种。固定管板常采用不可拆连接。两端管板直接焊在外壳上并兼作法兰,拆下顶盖可检修胀口或清洗管内。浮头式、U型管式等为使壳体清洗方便,常将管板夹在壳体法兰和顶盖法兰之间构成可拆连接。 (3) 封头和管箱 1.2.2 壳程结构 介质流经传热管外面的通道部分称为壳程。 壳程内的结构,主要由折流板、支承板、纵向隔板、旁路挡板及缓冲板等元件组成。由于各种换热器的

17、工艺性能、使用的场合不同,壳程内对各种元件的设置形式亦不同,以此来满足设计的要求。各元件在壳程的设置,按其不同的作用可分为两类:一类是为了壳侧介质对传热管最有效的流动,来提高换热设备的传热效果而设置的各种挡板,如折流板、纵向挡板。旁路挡板等;另一类是为了管束的安装及保护列管而设置的支承板、管束的导轨以及缓冲板等。 (1)壳体 壳体是一个圆筒形的容器,壳壁上焊有接管,供壳程流体进人和排出之用。直径小于400mm的壳体通常用钢管制成,大于400mrn的可用钢板卷焊而成。壳体材料根据工作温度选择,有防腐要求时,大多考虑使用复合金属板。 介质在壳程的流动方式有多种型式,单壳程型式应用最为普遍。如壳侧传

18、热膜系数远小于管侧,则可用纵向挡板分隔成双壳程型式。用两个换热器串联也可得到同样的效果。为降低壳程压降,可采用分流或错流等型式。 壳体内径D取决于传热管数N、排列方式和管心距t。计算式如下: 单管程 D=t(nc-1)+(23)d0(2-1)式中 t管心距,mm; d0换热管外径,mm; nc横过管束中心线的管数,该值与管子排列方式有关。 正三角形排列: 2-2)正方形排列: 2-3)多管程(2-4)式中 N排列管子数目; 管板利用率。 正角形排列:2管程 =0.70.854管程? =0.60.8正方形排列:2管程 =0.550.74管程? =0.450.65壳体内径D的计算值最终应圆整到标准

19、值。 (2)折流板 在壳程管束中,一般都装有横向折流板,用以引导流体横向流过管束,增加流体速度,以增强传热;同时起支撑管束、防止管束振动和管子弯曲的作用。 折流板的型式有圆缺型、环盘型和孔流型等。圆缺形折流板又称弓形折流板,是常用的折流板,有水平圆缺和垂直圆缺两种,如图2-4(a)、(b)所示。切缺率(切掉圆弧的高度与壳内径之比)通常为2050。垂直圆缺用于水平冷凝器、水平再沸器和含有悬浮固体粒子流体用的水平热交换器等。垂直圆缺时,不凝气不能在折流板顶部积存,而在冷凝器中,排水也不能在折流板底部积存。弓形折流板有单弓形和双弓形,如图2-5,双弓形折流板多用于大直径的换热器中。 环盘型折流板如图

20、2-4(C)所示,是由圆板和环形板组成的,压降较小,但传热也差些。在环形板背后有堆积不凝气或污垢,所以不多用。 孔流型折流板使流体穿过折流板孔和管子之间的缝隙流动,压降大,仅适用于清洁流体,其应用更少。 折流板的间隔,在允许的压力损失范围内希望尽可能小。一般推荐折流板间隔最小值为壳内径的1/5或者不小于50 mm,最大值决定于支持管所必要的最大间隔。 (3)缓冲板 (5)壳程接管 1.3 列管式换热器的设计计算 1.3.1 设计步骤 目前,我国已制订了管壳式换热器系列标准,设计中应尽可能选用系列化的标准产品,这样可简化设计和加工。但是实际生产条件千变万化,当系列化产品不能满足需要时,仍应根据生

21、产的具体要求自行设计非系列标准的换热器。此处将扼要介绍这两者的设计计算的基本步骤。 (1)非系列标准换热器的一般设计步骤 了解换热流体的物理化学性质和腐蚀性能。 由热平衡计算传热量的大小,并确定第二种换热流体的用量。 决定流体通入的空间。 计算流体的定性温度,以确定流体的物性数据。 初算有效平均温差。一般先按逆流计算,然后再校核。选取管径和管内流速。计算传热系数K值,包括管程对流传热系数和壳程对流传热系数的计算。由于壳程对流传热系数与壳径、管束等结构有关,因此一般先假定一个壳程对流传热系数,以计算K值,然后再作校核。 初估传热面积。考虑安全系数和初估性质,常取实际传热面积是计算值的1.151.

22、25倍。 选择管长L。计算管数N。校核管内流速,确定管程数。 画出排管图,确定壳径D和壳程挡板形式及数量等。 校核壳程对流传热系数。 校核有效平均温差。 校核传热面积,应有一定安全系数,否则需重新设计。 计算流体流动阻力。如阻力超过允许范围,需调整设计,直至满意为止。 (2)系列标准换热器选用的设计步骤 至步与(1)相同。 选取经验的传热系数K值。 计算传热面积。由系列标准选取换热器的基本参数。 校核传热系数,包括管程、壳程对流传热系数的计算。假如核算的K值与原选的经验值相差不大,就不再进行校核;如果相差较大,则需重新假设K值并重复上述以下步骤。 校核有效平均温差。校核传热面积,使其有一定安全系数,一般安全系数取1.1 1.25,否则需重行设计。 计算流体流动阻力,如超过允许范围,需重选换热器的基本参数再行计算。 从上述步骤来看,换热器的传热设计是一个反复试算的过程,有时要反复试算23次。所以,换热器设计计算实际上带有试差的性质。 2.3.2 传热计算主要公式 传热速率方程式 Q=KStm (2-5)式中? Q传热速率(热负荷),W; K总传热系数,W/(m2);

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2