ImageVerifierCode 换一换
格式:DOCX , 页数:16 ,大小:184.60KB ,
资源ID:2785894      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bingdoc.com/d-2785894.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(MATLAB编程冲击响应卷积DTFT与DFT的比较.docx)为本站会员(b****1)主动上传,冰点文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰点文库(发送邮件至service@bingdoc.com或直接QQ联系客服),我们立即给予删除!

MATLAB编程冲击响应卷积DTFT与DFT的比较.docx

1、MATLAB编程冲击响应卷积DTFT与DFT的比较(1) Using impz to calculate y(n): (N=8,16,32,64,128,256)The results of N=8, 16, 32 and 64 are in figure 1. Figure 1.The results of N=128 and 256 are in figure 2. Figure 2.(2) Using conv to calculate y(n): (N=8,16,32,64,128,256)The results of N=8, 16, 32 and 64 are in figure

2、3. Figure 3.The results of N=128 and 256 are in figure 4.Figure 4.(3) Using fft to calculate y(n): (N=8,16,32,64,128,256)The results of N=8, 16, 32 and 64 are in figure 5.Figure 5.The results of N=128 and 256 are in figure 6.Figure 6.Differences between impz, conv and fft: Results of impz and conv a

3、re very similar to each other, the only difference between this two is the range of frequency: convs is almost two times wider than impzs. Meanwhile the result of fft is quite different from that of impz and conv. When value of N is larger, the waveforms of fft are more similar to that of impz and c

4、onv.(4) Explore zero-padding: N=8; K=N, 1.5*N, 2*N and 2*N-1, shown in figure 7.Figure 7.N=16; K=N, 1.5*N, 2*N and 2*N-1, shown in figure8.Figure 8.N=32; K=N, 1.5*N, 2*N and 2*N-1, shown in figure 9.Figure 9.N=64; K=N, 1.5*N, 2*N and 2*N-1, shown in figure 10.Figure 10.N=128; K=N, 1.5*N, 2*N and 2*N

5、-1, shown in figure 11.Figure 11.N=256; K=N, 1.5*N, 2*N and 2*N-1, shown in figure 12.Figure 12.Comment:From above results, we can find that when the value of K is increasing, the result of fft becomes more same like that of conv; and then when K is equal to 2*N-1, both conv and fft provide the same

6、 results. Since when K increases, the number of sampling points in the frequency domain increases, which renders smaller frequency interval. Hence, the spectrum density will augment and the results of fft gradually become the same as that of conv.According to the analysis above, we can find when K=2

7、56 impz and convs results are same, and when K=2*N-1, fft and convs results are same, thus, the conclusion is ,when K=256 and K=2*N-1, all three methods produce the same result.Code:1. Using impz to calculate y(n): for N=8,16,32,64 a0=0.95; a=1-a0; b=1 -a0; c0=pi/13; c1=0.95; c2=cos(c0); c=1 -c1*c2;

8、 d=1 -2*c1*c2 c12; L=100; NFFT=2nextpow2(L); N=8; aa=a*b; bb=conv(c,d); y=impz(aa,bb,N); y1=impz(aa,bb,N*2); y2=impz(aa,bb,N*4); y3=impz(aa,bb,N*8); subplot(221); stem(y) title(impulse response N=8) subplot(222); stem(y1) title(impulse response N=16) subplot(223); stem(y2) title(impulse response N=3

9、2) subplot(224); stem(y3) title(impulse response N=64) for N=128,256 a0=0.95; a=1-a0; b=1 -a0; c0=pi/13; c1=0.95; c2=cos(c0); c=1 -c1*c2; d=1 -2*c1*c2 c12; L=100; NFFT=2nextpow2(L); N=8; aa=a*b; bb=conv(c,d); y4=impz(aa,bb,N*16); y5=impz(aa,bb,N*32); subplot(221); stem (y4 (1:128) title(impulse resp

10、onse N=128) subplot(222); stem (y5 (1:128) title(impulse response N=256)2. Using conv to calculate y(n): for N=8,16,32,64 a0=0.95; a=1-a0; b=1 -a0; c0=pi/13; c1=0.95; c2=cos(c0); c=1 -c1*c2; d=1 -2*c1*c2 c12; L=100; NFFT=2nextpow2(L); N=8; x=impz(a,b,N); h=impz(c,d,N); y=conv(x,h); subplot(221) stem

11、(y) title(convolution N=8) x1=impz(a,b,N*2); h1=impz(c,d,N*2); y1=conv(x1,h1); subplot(222) stem(y1) title(convolution N=16) x2=impz(a,b,N*4); h2=impz(c,d,N*4); y2=conv(x2,h2); subplot(223) stem(y2) title(convolution N=32) x3=impz(a,b,N*8); h3=impz(c,d,N*8); y3=conv(x3,h3); subplot(224) stem(y3) tit

12、le(convolution N=64) for N=128,256 a0=0.95; a=1-a0; b=1 -a0; c0=pi/13; c1=0.95; c2=cos(c0); c=1 -c1*c2; d=1 -2*c1*c2 c12; L=100; NFFT=2nextpow2(L); N=8; x=impz(a,b,N*16); h=impz(c,d,N*16); y=conv(x,h); subplot(221) stem(y (1:128) title(convolution N=128) x1=impz(a,b,N*32); h1=impz(c,d,N*32); y1=conv

13、(x1,h1); subplot(222) stem(y1 (1:128) title(convolution N=256)3.Using fft to calculate y(n): for N=8,16,32,64 a0=0.95; a=1-a0; b=1 -a0; c0=pi/13; c1=0.95; c2=cos(c0); c=1 -c1*c2; d=1 -2*c1*c2 c12; L=100; NFFT=2nextpow2(L); N=8; x1=impz(a,b,N); h1=impz(c,d,N); y11=fft(x1,NFFT); y21=fft(h1,NFFT); y31=

14、times(y11,y21); y1=ifft(y31); subplot(221); stem(y1) title(fft N=8) x2=impz(a,b,N*2); h2=impz(c,d,N*2); y12=fft(x2,NFFT); y22=fft(h2,NFFT); y32=times(y12,y22); y2=ifft(y32); subplot(222); stem(y2) title(fft N=16) x3=impz(a,b,N*4); h3=impz(c,d,N*4); y13=fft(x3,NFFT); y23=fft(h3,NFFT); y33=times(y13,y

15、23); y3=ifft(y33); subplot(223); stem(y3) title(fft N=32) x4=impz(a,b,N*8); h4=impz(c,d,N*8); y14=fft(x4,NFFT); y24=fft(h4,NFFT); y34=times(y14,y24); y4=ifft(y34); subplot(224); stem(y4) title(fft N=64) for N=128,256 a0=0.95; a=1-a0; b=1 -a0; c0=pi/13; c1=0.95; c2=cos(c0); c=1 -c1*c2; d=1 -2*c1*c2 c

16、12; L=100; NFFT=2nextpow2(L); N=8; x1=impz(a,b,N*16); h1=impz(c,d,N*16); y11=fft(x1,NFFT); y21=fft(h1,NFFT); y31=times(y11,y21); y1=ifft(y31); subplot(221); stem(y1) title(fft N=128) x2=impz(a,b,N*32); h2=impz(c,d,N*32); y12=fft(x2,NFFT); y22=fft(h2,NFFT); y32=times(y12,y22); y2=ifft(y32); subplot(2

17、22); stem(y2) title(fft N=256)4: Explore zero-padding using K-point DFT N=8, 16, 32, 64, 128 and 256 K=N, 1.5*N, 2*N and 2*N-1 a0=0.95; a=1-a0; b=1 -a0; c0=pi/13; c1=0.95; c2=cos(c0); c=1 -c1*c2; d=1 -2*c1*c2 c12; N=8; K1=N; x=impz(a,b,N); h=impz(c,d,N); y11=conv(x,h); y121=fft(x,K1); y122=fft(h,K1)

18、; y123=times(y121,y122); y12=ifft(y123); subplot(221); plot(y11); hold on; stem(y12); hold off; title(N=K, plot result of conv and stem result of fft) K2=1.5*N; y21=conv(x,h); y221=fft(x,K2); y222=fft(h,K2); y223=times(y221,y222); y22=ifft(y223); subplot(222) plot(y21); hold on; stem(y22); hold off;

19、 title(K=1.5*N, plot result of conv and stem result of fft) K3=2*N; y31=conv(x,h); y321=fft(x,K3); y322=fft(h,K3); y323=times(y321,y322); y32=ifft(y323); subplot(223) plot(y31); hold on; stem(y32); hold off; title(K=2*N, plot result of conv and stem result of fft) K4=2*N-1; y41=conv(x,h); y421=fft(x,K4); y422=fft(h,K4); y423=times(y421,y422); y42=ifft(y423); subplot(224) plot(y41); hold on; stem(y42); hold off; title(K=2*N-1, plot result of conv and stem result of fft)

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2