ImageVerifierCode 换一换
格式:DOCX , 页数:13 ,大小:109.59KB ,
资源ID:694845      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bingdoc.com/d-694845.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(智能家居系统英文文献翻译.docx)为本站会员(wj)主动上传,冰点文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰点文库(发送邮件至service@bingdoc.com或直接QQ联系客服),我们立即给予删除!

智能家居系统英文文献翻译.docx

1、毕业设计(论文)外文文献及译文院(部):电气与控制工程学院专业:自动化班级:1004 班姓名:梁青学号:1006050413指导教师:杨学存翻译日期:2014-6-5Foreign LiteratureIncreasing an individuals quality of life via their intelligent homeThe hypothesis of this project is: can an individuals quality of life be increased by integrating “intelligent technology” into the

2、ir home environment. This hypothesis is very broad, and hence the researchers will investigate it with regard to various, potentially over-lapping, sub-sections of the population. In particular, the project will focus on sub-sections with health-care needs, because it is believed that these sub-sect

3、ions will receive the greatest benefit from this enhanced approach to housing. Two research questions flow from this hypothesis: what are the health-care issues that could be improved via “intelligent housing”, and what are the technological issues needing to be solved to allow “intelligent housing”

4、 to be constructed? While a small number of initiatives exist, outside Canada, which claim to investigate this area, none has the global vision of this area. Work tends to be in small areas with only a limited idea of how the individual pieces contribute towards a greater goal. This project has a ve

5、ry strong sense of what it is trying to attempt, and believes that without this global direction the other initiatives will fail to address the large important issues described within various parts of this proposal, and that with the correct global direction the sum of the parts will produce much gr

6、eater rewards than the individual components. This new field has many parallels with the field of business process engineering, where many products fail due to only considering a sub-set of the issues, typically the technology subset. Successful projects and implementations only started flow when pe

7、ople started to realize that a holistic approach was essential. This holistic requirement also applies to the field of “smart housing”; if we genuinely want it to have benefit to the community rather than just technological interest. Having said this, much of the work outlined below is extremely imp

8、ortant and contains a great deal of novelty within their individual topics.Health-Care and Supportive housing:To date, there has been little coordinated research on how “smart house” technologies can assist frail seniors in remaining at home, and/or reduce the costs experienced by their informal car

9、egivers. Thus, the purpose of the proposed research is to determine the usefulness of a variety of residential technologies in helping seniors maintain their independence and in helping caregivers sustain their caring activities.The overall design of the research is to focus on two groups of seniors

10、. The first is seniorswho are being discharged from an acute care setting with the potential for reduced ability to remain independent. An example is seniors who have had hip replacement surgery. This group may benefit from technologies that would help them become adapted to their reduced mobility.

11、The second is seniors who have a chronic health problem such as dementia and who are receiving assistance from an informal caregiver living at a distance. Informal caregivers living at a distance from the cared-for senior are at high risk of caregiver burnout. Monitoring the cared-for senior for hea

12、lth and safety is one of the important tasks done by such caregivers. Devices such as floor sensors (to determine whether the senior has fallen) and access controls to ensure safety from intruders or to indicate elopement by a senior with dementia could reduce caregiver time spent commuting to monit

13、or the senior.For both samples, trials would consist of extended periods of residence within the smart house. Samples of seniors being discharged from acute care would be recruited from acute care hospitals. Samples of seniors being cared for by informal caregivers at a distance could be recruited t

14、hrough dementia diagnosis clinics or through request from caregivers for respite.Limited amounts of clinical and health service research has been conducted upon seniors (with complex health problems) in controlled environments such as that represented by the “smart house”. For example, it is known t

15、hat night vision of the aged is poor but there is very little information regarding the optimum level of lighting after wakening or for night activities. Falling is a major issue for older persons; and it results in injuries, disabilities and additional health care costs. For those with dementing il

16、lnesses, safety is the key issue during performance of the activities of daily living (ADL). It is vital for us to be able to monitor where patients would fall during ADL. Patients and caregivers activities would be monitored and data will be collected in the following conditions.Projects would conc

17、entrate on sub-populations, with a view to collecting scientific data about their conditions and the impact of technology upon their life styles. For example:Persons with stable chronic disability following a stroke and their caregivers: to research optimum models, types and location of various sens

18、ors for such patients (these patients may have neglect, hemiplegia, aphasia and judgment problems); to research pattern of movements during the ambulation, use of wheel chairs or canes on various type of floor material; to research caregivers support through e-health technology; to monitor frequenci

19、es and location of the falls; to evaluate the value of smart appliances for stroke patients and caregivers; to evaluate information and communication technology set up for Tele-homecare; to evaluatetechnology interface for Tele-homecare staff and clients; to evaluate the most effective way of lighti

20、ng the various part of the house; to modify or develop new technology to enhance comfort and convenience of stroke patients and caregivers; to evaluate the value of surveillance systems in assisting caregivers.Persons with Alzheimers disease and their caregivers: to evaluate the effect of smart hous

21、e (unfamiliar environment) on their ability to conduct self-care with and without prompting; to evaluate their ability to use unfamiliar equipment in the smart house; to evaluate and monitor persons with Alzheimers disease movement pattern; to evaluate and monitor falls or wandering; to evaluate the

22、 type and model of sensors to monitor patients; to evaluate the effect of wall color for patients and care givers; to evaluate the value of proper lighting.Technology - Ubiquitous Computing:The ubiquitous computing infrastructure is viewed as the backbone of the “intelligence” within the house. In c

23、ommon with all ubiquitous computing systems, the primary components with this system will be: the array of sensors, the communication infrastructure and the software control (based upon software agents) infrastructure. Again, it is considered essential that this topic is investigated holistically.Se

24、nsor design: The focus of research here will be development of (micro)-sensors and sensor arrays using smart materials, e.g. piezoelectric materials, magneto strictive materials and shape memory alloys (SMAs). In particular, SMAs are a class of smart materials that are attractive candidates for sens

25、ing and actuating applications primarily because of their extraordinarily high work output/volume ratio compared to other smart materials. SMAs undergo a solid-solid phase transformation when subjected to an appropriate regime of mechanical and thermal load, resulting in a macroscopic change in dime

26、nsions and shape; this change is recoverable by reversing the thermo mechanical loading and is known as a one-way shape memory effect. Due to this material feature, SMAs can be used as both a sensor and an actuator. A very recent development is an effort to incorporate SMAs in micro-electromechanica

27、l systems (MEMS) so that these materials can be used as integral parts of micro-sensors and actuators.MEMS are an area of activity where some of the technology is mature enough for possible commercial applications to emerge. Some examples are micro-chemical analyzers, humidity and pressure sensors,

28、MEMS for flow control, synthetic jet actuators and optical MEMS (for the next generation internet). Incorporating SMAs in MEMS is a relatively new effort in theresearch community; to the best of our knowledge, only one group (Prof. Greg Carman, Mechanical Engineering, University of California, Los A

29、ngeles) has successfully demonstrated the dynamic properties of SMA-based MEMS. Here, the focus will be to harness the sensing and actuation capabilities of smart materials to design and fabricate useful and economically viable micro-sensors and actuators.Communications: Construction and use of an “

30、intelligent house” offers extensive opportunities to analyze and verify the operation of wireless and wired home-based communication services. While some of these are already widely explored, many of the issues have received little or no attention. It is proposed to investigate the following issues:

31、Measurement of channel statistics in a residential environment: knowledge of the indoor wireless channel statistics is critical for enabling the design of efficient transmitters and receivers, as well as determining appropriate levels of signal power, data transfer rates, modulation techniques, and

32、error control codes for the wireless links. Interference, channel distortion, and spectral limitations that arises as a result of equipment for the disabled (wheelchairs, IV stands, monitoring equipment, etc.) is of particular interest.Design, analysis, and verification of enhanced antennas for indoor wireless communications. Indoor wireless communications present the need for compact and rugged antennas. New antenna designs, optimized for desired data rates, frequency of operation, and spatial requirements, could be con

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2