ImageVerifierCode 换一换
格式:DOCX , 页数:9 ,大小:160.68KB ,
资源ID:997484      下载积分:15 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bingdoc.com/d-997484.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(线性判别分析LDAWord文件下载.docx)为本站会员(聆听****声音)主动上传,冰点文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰点文库(发送邮件至service@bingdoc.com或直接QQ联系客服),我们立即给予删除!

线性判别分析LDAWord文件下载.docx

1、类间离散度矩阵类内离散度矩阵属于类的样本个数第个样本所有样本的均值类的样本均值三公式推导,算法形式化描述根据符号说明可得类的样本均值为: (1.1)同理我们也可以得到总体样本均值: (1.2)根据类间离散度矩阵和类内离散度矩阵定义,可以得到如下式子: (1.3) (1.4)当然还有另一种类间类内的离散度矩阵表达方式: (1.5) (1.6)其中是指类样本的先验概率,即样本中属于类的概率,把代入第二组式子中,我们可以发现第一组式子只是比第二组式子都少乘了,我们将在稍后进行讨论,其实对于乘不乘该,对于算法本身并没有影响,现在我们分析一下算法的思想,我们可以知道矩阵的实际意义是一个协方差矩阵,这个矩

2、阵所刻画的是该类与样本总体之间的关系,其中该矩阵对角线上的函数所代表的是该类相对样本总体的方差(即分散度),而非对角线上的元素所代表是该类样本总体均值的协方差(即该类和总体样本的相关联度或称冗余度),所以根据公式(1.3)可知(1.3)式即把所有样本中各个样本根据自己所属的类计算出样本与总体的协方差矩阵的总和,这从宏观上描述了所有类和总体之间的离散冗余程度。同理可以的得出(1.4)式中为分类内各个样本和所属类之间的协方差矩阵之和,它所刻画的是从总体来看类内各个样本与类之间(这里所刻画的类特性是由是类内各个样本的平均值矩阵构成)离散度,其实从中可以看出不管是类内的样本期望矩阵还是总体样本期望矩阵

3、,它们都只是充当一个媒介作用,不管是类内还是类间离散度矩阵都是从宏观上刻画出类与类之间的样本的离散度和类内样本和样本之间的离散度。LDA做为一个分类的算法,我们当然希望它所分的类之间耦合度低,类内的聚合度高,即类内离散度矩阵的中的数值要小,而类间离散度矩阵中的数值要大,这样的分类的效果才好。这里我们引入Fisher鉴别准则表达式: (1.7)其中为任一维列矢量。Fisher线性鉴别分析就是选取使得达到最大值的矢量作为投影方向,其物理意义就是投影后的样本具有最大的类间离散度和最小的类内离散度。我们把公式(1.4)和公式(1.3)代入公式(1.7)得到: (1.8)我们可以设矩阵其中可以看成是一个

4、空间,也就是说是构成的低维空间(超平面)的投影。也可表示为,而当样本为列向量时,即表示在空间的几何距离的平方。所以可以推出Fisher线性鉴别分析表达式的分子即为样本在投影空间下的类间几何距离的平方和,同理也可推出分母为样本在投影空间下的类内几何距离的平方差,所以分类问题就转化到找一个低维空间使得样本投影到该空间下时,投影下来的类间距离平方和与类内距离平方和之比最大,即最佳分类效果。所以根据上述思想,即通过最优化下面的准则函数找到有一组最优鉴别矢量构成的投影矩阵(这里我们也可以看出可以通过分子分母约掉,所以前面所提到的第一组公式和第二组公式所表达的效果是一样的)。 (1.9)可以证明,当为非奇

5、异(一般在实现LDA算法时,都会对样本做一次PCA算法的降维,消除样本的冗余度,从而保证是非奇异阵,当然即使为奇异阵也是可以解的,可以把或对角化,这里不做讨论,假设都是非奇异的情况)时,最佳投影矩阵的列向量恰为下来广义特征方程 (1.10)的个最大的特征值所对应的特征向量(矩阵的特征向量),且最优投影轴的个数 。根据(1.10)式可以推出 (1.11)又由于 下面给出验证:把(1.10)式代入(1.9)式可得: (1.12)根据公式的意义来看,要使得最大则只要取 即可。所以根据公式(1.9)可得出结论:投影矩阵的列向量为(自取)个最大特征值所对应的特征向量,其中 。四算法的物理意义和思考4.1

6、 用一个例子阐述LDA算法在空间上的意义下面我们利用LDA进行一个分类的问题:假设一个产品有两个参数来衡量它是否合格,我们假设两个参数分别为:参数A参数B是否合格2.956.63合格2.537.793.575.653.165.472.584.46不合格2.166.223.273.52实验数据来源:所以我们可以根据上图表格把样本分为两类,一类是合格的,一类是不合格的,所以我们可以创建两个数据集类:cls1_data=2.95006.63002.53007.79003.57005.65003.16005.4700cls2_data2.58004.46002.16006.22003.27003.52

7、00其中cls1_data为合格样本,cls2_data为不合格的样本,我们根据公式(1.1),(1.2)可以算出合格的样本的期望值,不合格类样本的合格的值,以及总样本期望:E_cls13.05256.3850E_cls22.67004.7333E_all2.88865.6771我们可以做出现在各个样本点的位置:图一其中蓝色*的点代表不合格的样本,而红色实点代表合格的样本,天蓝色的倒三角是代表总期望,蓝色三角形代表不合格样本的期望,红色三角形代表合格样本的期望。从x,y轴的坐标方向上可以看出,合格和不合格样本区分度不佳。我们在可以根据表达式(1.3),(1.4)可以计算出类间离散度矩阵和类内离

8、散度矩阵:Sb0.03580.15470.15470.6681Sw0.5909-1.3338-1.33383.5596我们可以根据公式(1.10),(1.11)算出特征值以及对应的特征向量:L0.000002.8837对角线上为特征值,第一个特征值太小被计算机约为0了与他对应的特征向量为V-0.9742-0.92300.2256-0.3848根据取最大特征值对应的特征向量:(-0.9230,-0.3848),该向量即为我们要求的子空间,我们可以把原来样本投影到该向量后所得到新的空间(2维投影到1维,应该为一个数字)new_cls1_data-5.2741-5.3328-5.4693-5.021

9、6为合格样本投影后的样本值new_cls2_data-4.0976-4.3872-4.3727为不合格样本投影后的样本值,我们发现投影后,分类效果比较明显,类和类之间聚合度很高,我们再次作图以便更直观看分类效果图二蓝色的线为特征值较小所对应的特征向量,天蓝色的为特征值较大的特征向量,其中蓝色的圈点为不合格样本在该特征向量投影下来的位置,二红色的*符号的合格样本投影后的数据集,从中个可以看出分类效果比较好(当然由于x,y轴单位的问题投影不那么直观)。我们再利用所得到的特征向量,来对其他样本进行判断看看它所属的类型,我们取样本点(2.81,5.46),我们把它投影到特征向量后得到:result=-4.6947所以它应该属于不合格样本。4.2 LDA算法与PCA算法在传统特征脸方法的基础上,研究者注意到特征值打的特征向量(即特征脸)并一定是分类性能最好的方向,而且对K-L变换而言,外在因素带来的图像的差异和人脸本身带来的差异是无法区分的,特征脸在很大程度上反映了光照等的差异。研究表明,特征脸,特征脸方法随着光线,角度和人脸尺寸等因素的引入,识别率急剧下降,因此特征脸方法用于人脸识别还存在理论的缺陷。线性判别式分析提取的特征向量集,强调的是不同人脸的差异而不是人脸表情、照明条件等条件的变化,从而有助于提高识别效果。

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2