线性判别分析LDAWord文件下载.docx

上传人:聆听****声音 文档编号:997484 上传时间:2023-04-30 格式:DOCX 页数:9 大小:160.68KB
下载 相关 举报
线性判别分析LDAWord文件下载.docx_第1页
第1页 / 共9页
线性判别分析LDAWord文件下载.docx_第2页
第2页 / 共9页
线性判别分析LDAWord文件下载.docx_第3页
第3页 / 共9页
线性判别分析LDAWord文件下载.docx_第4页
第4页 / 共9页
线性判别分析LDAWord文件下载.docx_第5页
第5页 / 共9页
线性判别分析LDAWord文件下载.docx_第6页
第6页 / 共9页
线性判别分析LDAWord文件下载.docx_第7页
第7页 / 共9页
线性判别分析LDAWord文件下载.docx_第8页
第8页 / 共9页
线性判别分析LDAWord文件下载.docx_第9页
第9页 / 共9页
亲,该文档总共9页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

线性判别分析LDAWord文件下载.docx

《线性判别分析LDAWord文件下载.docx》由会员分享,可在线阅读,更多相关《线性判别分析LDAWord文件下载.docx(9页珍藏版)》请在冰点文库上搜索。

线性判别分析LDAWord文件下载.docx

类间离散度矩阵

类内离散度矩阵

属于类的样本个数

第个样本

所有样本的均值

类的样本均值

三. 

公式推导,算法形式化描述

根据符号说明可得类的样本均值为:

(1.1)

同理我们也可以得到总体样本均值:

(1.2)

根据类间离散度矩阵和类内离散度矩阵定义,可以得到如下式子:

(1.3)

(1.4)

当然还有另一种类间类内的离散度矩阵表达方式:

(1.5)

(1.6)

其中是指类样本的先验概率,即样本中属于类的概率,把代入第二组式子中,我们可以发现第一组式子只是比第二组式子都少乘了,我们将在稍后进行讨论,其实对于乘不乘该,对于算法本身并没有影响,现在我们分析一下算法的思想,

我们可以知道矩阵的实际意义是一个协方差矩阵,这个矩阵所刻画的是该类与样本总体之间的关系,其中该矩阵对角线上的函数所代表的是该类相对样本总体的方差(即分散度),而非对角线上的元素所代表是该类样本总体均值的协方差(即该类和总体样本的相关联度或称冗余度),所以根据公式(1.3)可知(1.3)式即把所有样本中各个样本根据自己所属的类计算出样本与总体的协方差矩阵的总和,这从宏观上描述了所有类和总体之间的离散冗余程度。

同理可以的得出(1.4)式中为分类内各个样本和所属类之间的协方差矩阵之和,它所刻画的是从总体来看类内各个样本与类之间(这里所刻画的类特性是由是类内各个样本的平均值矩阵构成)离散度,其实从中可以看出不管是类内的样本期望矩阵还是总体样本期望矩阵,它们都只是充当一个媒介作用,不管是类内还是类间离散度矩阵都是从宏观上刻画出类与类之间的样本的离散度和类内样本和样本之间的离散度。

LDA做为一个分类的算法,我们当然希望它所分的类之间耦合度低,类内的聚合度高,即类内离散度矩阵的中的数值要小,而类间离散度矩阵中的数值要大,这样的分类的效果才好。

这里我们引入Fisher鉴别准则表达式:

(1.7)

其中为任一维列矢量。

Fisher线性鉴别分析就是选取使得达到最大值的矢量作为投影方向,其物理意义就是投影后的样本具有最大的类间离散度和最小的类内离散度。

我们把公式(1.4)和公式(1.3)代入公式(1.7)得到:

(1.8)

我们可以设矩阵其中可以看成是一个空间,也就是说是构成的低维空间(超平面)的投影。

也可表示为,而当样本为列向量时,即表示在空间的几何距离的平方。

所以可以推出Fisher线性鉴别分析表达式的分子即为样本在投影空间下的类间几何距离的平方和,同理也可推出分母为样本在投影空间下的类内几何距离的平方差,所以分类问题就转化到找一个低维空间使得样本投影到该空间下时,投影下来的类间距离平方和与类内距离平方和之比最大,即最佳分类效果。

所以根据上述思想,即通过最优化下面的准则函数找到有一组最优鉴别矢量构成的投影矩阵(这里我们也可以看出可以通过分子分母约掉,所以前面所提到的第一组公式和第二组公式所表达的效果是一样的)。

(1.9)

可以证明,当为非奇异(一般在实现LDA算法时,都会对样本做一次PCA算法的降维,消除样本的冗余度,从而保证是非奇异阵,当然即使为奇异阵也是可以解的,可以把或对角化,这里不做讨论,假设都是非奇异的情况)时,最佳投影矩阵的列向量恰为下来广义特征方程

(1.10)

的个最大的特征值所对应的特征向量(矩阵的特征向量),且最优投影轴的个数。

根据(1.10)式可以推出

(1.11)

又由于

下面给出验证:

把(1.10)式代入(1.9)式可得:

(1.12)

根据公式的意义来看,要使得最大则只要取即可。

所以根据公式(1.9)可得出结论:

投影矩阵的列向量为(自取)个最大特征值所对应的特征向量,其中。

四. 

算法的物理意义和思考

4.1 

用一个例子阐述LDA算法在空间上的意义

下面我们利用LDA进行一个分类的问题:

假设一个产品有两个参数来衡量它是否合格,

我们假设两个参数分别为:

参数A

参数B

是否合格

2.95

6.63

合格

2.53

7.79

3.57

5.65

3.16

5.47

2.58

4.46

不合格

2.16

6.22

3.27

3.52

实验数据来源:

所以我们可以根据上图表格把样本分为两类,一类是合格的,一类是不合格的,所以我们可以创建两个数据集类:

cls1_data 

=

2.9500 

6.6300

2.5300 

7.7900

3.5700 

5.6500

3.1600 

5.4700

cls2_data 

2.5800 

4.4600

2.1600 

6.2200

3.2700 

3.5200

其中cls1_data为合格样本,cls2_data为不合格的样本,我们根据公式(1.1),(1.2)可以算出合格的样本的期望值,不合格类样本的合格的值,以及总样本期望:

E_cls1 

3.0525 

6.3850

E_cls2 

2.6700 

4.7333

E_all 

2.8886 

5.6771

我们可以做出现在各个样本点的位置:

图一

其中蓝色‘*’的点代表不合格的样本,而红色实点代表合格的样本,天蓝色的倒三角是代表总期望,蓝色三角形代表不合格样本的期望,红色三角形代表合格样本的期望。

从x,y轴的坐标方向上可以看出,合格和不合格样本区分度不佳。

我们在可以根据表达式(1.3),(1.4)可以计算出类间离散度矩阵和类内离散度矩阵:

Sb 

0.0358 

0.1547

0.1547 

0.6681

Sw 

0.5909 

-1.3338

-1.3338 

3.5596

我们可以根据公式(1.10),(1.11)算出特征值以及对应的特征向量:

0.0000 

2.8837

对角线上为特征值,第一个特征值太小被计算机约为0了

与他对应的特征向量为

-0.9742 

-0.9230

0.2256 

-0.3848

根据取最大特征值对应的特征向量:

(-0.9230,-0.3848),该向量即为我们要求的子空间,我们可以把原来样本投影到该向量后 

所得到新的空间(2维投影到1维,应该为一个数字)

new_cls1_data 

-5.2741

-5.3328

-5.4693

-5.0216

为合格样本投影后的样本值

new_cls2_data 

-4.0976

-4.3872

-4.3727

为不合格样本投影后的样本值,我们发现投影后,分类效果比较明显,类和类之间聚合度很高,我们再次作图以便更直观看分类效果

图二

蓝色的线为特征值较小所对应的特征向量,天蓝色的为特征值较大的特征向量,其中蓝色的圈点为不合格样本在该特征向量投影下来的位置,二红色的‘*’符号的合格样本投影后的数据集,从中个可以看出分类效果比较好(当然由于x,y轴单位的问题投影不那么直观)。

我们再利用所得到的特征向量,来对其他样本进行判断看看它所属的类型,我们取样本点

(2.81,5.46),

我们把它投影到特征向量后得到:

result 

-4.6947 

所以它应该属于不合格样本。

4.2 

LDA算法与PCA算法

在传统特征脸方法的基础上,研究者注意到特征值打的特征向量(即特征脸)并一定是分类性能最好的方向,而且对K-L变换而言,外在因素带来的图像的差异和人脸本身带来的差异是无法区分的,特征脸在很大程度上反映了光照等的差异。

研究表明,特征脸,特征脸方法随着光线,角度和人脸尺寸等因素的引入,识别率急剧下降,因此特征脸方法用于人脸识别还存在理论的缺陷。

线性判别式分析提取的特征向量集,强调的是不同人脸的差异而不是人脸表情、照明条件等条件的变化,从而有助于提高识别效果。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > IT计算机 > 电脑基础知识

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2