基于FPGA系统的数字信号处理适用性评估FPGACPLDVHDLDSP数字信号处理等类型的论文外文翻译一枚.docx

上传人:b****3 文档编号:10285140 上传时间:2023-05-24 格式:DOCX 页数:25 大小:105.16KB
下载 相关 举报
基于FPGA系统的数字信号处理适用性评估FPGACPLDVHDLDSP数字信号处理等类型的论文外文翻译一枚.docx_第1页
第1页 / 共25页
基于FPGA系统的数字信号处理适用性评估FPGACPLDVHDLDSP数字信号处理等类型的论文外文翻译一枚.docx_第2页
第2页 / 共25页
基于FPGA系统的数字信号处理适用性评估FPGACPLDVHDLDSP数字信号处理等类型的论文外文翻译一枚.docx_第3页
第3页 / 共25页
基于FPGA系统的数字信号处理适用性评估FPGACPLDVHDLDSP数字信号处理等类型的论文外文翻译一枚.docx_第4页
第4页 / 共25页
基于FPGA系统的数字信号处理适用性评估FPGACPLDVHDLDSP数字信号处理等类型的论文外文翻译一枚.docx_第5页
第5页 / 共25页
基于FPGA系统的数字信号处理适用性评估FPGACPLDVHDLDSP数字信号处理等类型的论文外文翻译一枚.docx_第6页
第6页 / 共25页
基于FPGA系统的数字信号处理适用性评估FPGACPLDVHDLDSP数字信号处理等类型的论文外文翻译一枚.docx_第7页
第7页 / 共25页
基于FPGA系统的数字信号处理适用性评估FPGACPLDVHDLDSP数字信号处理等类型的论文外文翻译一枚.docx_第8页
第8页 / 共25页
基于FPGA系统的数字信号处理适用性评估FPGACPLDVHDLDSP数字信号处理等类型的论文外文翻译一枚.docx_第9页
第9页 / 共25页
基于FPGA系统的数字信号处理适用性评估FPGACPLDVHDLDSP数字信号处理等类型的论文外文翻译一枚.docx_第10页
第10页 / 共25页
基于FPGA系统的数字信号处理适用性评估FPGACPLDVHDLDSP数字信号处理等类型的论文外文翻译一枚.docx_第11页
第11页 / 共25页
基于FPGA系统的数字信号处理适用性评估FPGACPLDVHDLDSP数字信号处理等类型的论文外文翻译一枚.docx_第12页
第12页 / 共25页
基于FPGA系统的数字信号处理适用性评估FPGACPLDVHDLDSP数字信号处理等类型的论文外文翻译一枚.docx_第13页
第13页 / 共25页
基于FPGA系统的数字信号处理适用性评估FPGACPLDVHDLDSP数字信号处理等类型的论文外文翻译一枚.docx_第14页
第14页 / 共25页
基于FPGA系统的数字信号处理适用性评估FPGACPLDVHDLDSP数字信号处理等类型的论文外文翻译一枚.docx_第15页
第15页 / 共25页
基于FPGA系统的数字信号处理适用性评估FPGACPLDVHDLDSP数字信号处理等类型的论文外文翻译一枚.docx_第16页
第16页 / 共25页
基于FPGA系统的数字信号处理适用性评估FPGACPLDVHDLDSP数字信号处理等类型的论文外文翻译一枚.docx_第17页
第17页 / 共25页
基于FPGA系统的数字信号处理适用性评估FPGACPLDVHDLDSP数字信号处理等类型的论文外文翻译一枚.docx_第18页
第18页 / 共25页
基于FPGA系统的数字信号处理适用性评估FPGACPLDVHDLDSP数字信号处理等类型的论文外文翻译一枚.docx_第19页
第19页 / 共25页
基于FPGA系统的数字信号处理适用性评估FPGACPLDVHDLDSP数字信号处理等类型的论文外文翻译一枚.docx_第20页
第20页 / 共25页
亲,该文档总共25页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

基于FPGA系统的数字信号处理适用性评估FPGACPLDVHDLDSP数字信号处理等类型的论文外文翻译一枚.docx

《基于FPGA系统的数字信号处理适用性评估FPGACPLDVHDLDSP数字信号处理等类型的论文外文翻译一枚.docx》由会员分享,可在线阅读,更多相关《基于FPGA系统的数字信号处理适用性评估FPGACPLDVHDLDSP数字信号处理等类型的论文外文翻译一枚.docx(25页珍藏版)》请在冰点文库上搜索。

基于FPGA系统的数字信号处理适用性评估FPGACPLDVHDLDSP数字信号处理等类型的论文外文翻译一枚.docx

基于FPGA系统的数字信号处理适用性评估FPGACPLDVHDLDSP数字信号处理等类型的论文外文翻译一枚

一、英文原文

AnAssessmentoftheSuitabilityofFPGA-BasedSystemsforuseinDigitalSignalProcessing★★★

RussellJ.PetersenandBradL.Hutchings

BrighamYoungUniversity,Dept.ofElectricalandComputerEngineering,459CB,

ProvoUT84602,USA

Abstract.FPGAshavebeenproposedashigh-performancealternativestoDSPprocessors.ThispaperquantitativelycomparesFPGAperformanceagainstDSPprocessorsandASICsusingactualapplicationsandexistingCADtoolsanddevices.PerformancemeasureswerebasedonactualmultiplierperformancewithFPGAs,DSPprocessorsandASICs.ThisstudydemonstratesthatFPGAscanprovideanorderofmagnitudebetterperformancethanDSPprocessorsandcaninmanycasesapproachorexceedASIClevelsofperformance.

1Introduction

TomeettheintensivecomputationandI/OdemandsimposedbyDSPsystemsmanycustomdigitalhardwaresystemsutilizingASICshavebeendesignedandbuilt.Customhardwaresolutionshavebeennecessaryduetothelowperformanceofotherapproachessuchasmicroprocessor-basedsystems,buthavethedisadvantageofinflexibilityandahighcostofdevelopment.TheDSPprocessorattemptstoovercometheinflexibilityanddevelopmentcostsofcustomhardware.TheDSPprocessorprovidesflexibilitythroughsoftwareinstructiondecodingandexecutionwhileprovidinghighperformancearithmeticcomponentssuchasfastarraymultipliersandmultiplememorybankstoincreasedatathroughput.TheFPGAhasalsorecentlygeneratedinterestforuseinimplementingdigitalsignalprocessingsystemsduetoitsabilitytoimplementcustomhardwaresolutionswhilestillmaintainingflexibilitythroughdevicereprogramming[2].UsingtheFPGAitishopedthatasignificantperformanceimprovementcanbeobtainedovertheDSPprocessorwithoutsacrificingsystemflexibility.ThispaperisanattempttoquantifytheabilityoftheFPGAtoprovideanacceptableperformanceimprovementovertheDSPprocessorintheareaofdigitalsignalprocessing.

2Multiplicationanddigitalsignalprocessing

Acoreoperationindigitalsignalprocessingalgorithmsismultiplication.Often,thecomputationalperformanceofaDSPsystemislimitedbyitsmultiplicationperformance,hencethemultiplicationrateofthesystemmustbemaximized.CustomhardwaresystemsbasedonASICsandDSPprocessorsmaximizemultiplicationperformancebyusingfastparallel-arraymultiplierseithersinglyorinparallel.FPGAsalsohavetheabilitytoimplementmultiplierssinglyorinparallelaccordingtotheneedsoftheapplication.Thus,inordertounderstandtheperformanceoftheFPGArelativetotheASICandtheDSPprocessoracomparisonofFPGAmultiplicationalternativesandtheirperformancerelativetocustommultipliersolutionsisneeded.ThissectionpresentsthebasicalternativesformultiplierimplementationsandtheirperformancewhenimplementedonFPGAs.

2.1Multiplierarchitecturealternatives

Whenimplementingmultipliersinhardwaretwobasicalternativesareavailable.Themultipliercanbeimplementedasafullyparallel-arraymultiplierorasafullybit-serialmultiplierasshowninFigure1.Theadvantageofthefullyparallelapproachisthatalloftheproductbitsareproducedatoncewhichgenerallyresultsinafastermultiplicationrate.Themultiplicationrateforaparallelmultiplierisjustthedelaythroughthecombinationallogic.However,parallelmultipliersalsorequirealargeamountofareatoimplement.Bit-serialmultipliersontheotherhandgenerallyrequireonly

ththeareaofanequivalentparallelmultiplierbuttake2Nbittimestocomputetheentireproduct(Nisthenumberofbitsofmultiplierprecision).Thisoftenleadsonetobelievethatthebit-serialapproachisthus2Ntimesslowerthananequivalentparallelmultiplierbutthisisnottrue.Thebit-times(clockcyclesforsynchronousbit-serialmultipliers)areveryshortindurationduetothereducedsizeandhencepropagationpathsofthemultiplier.Thisresultsinabit-serialmultiplierachievingabout

themultiplicationrateofanequivalentparallelmultiplieronaverage,evenexceedingtheperformanceoftheparallelmultiplierinsomecases.

Fig.1.Blockdiagramsofbasicmultiplieralternatives

2.2FPGAmultiplicationresults

Table1liststheperformanceofseveralmultipliersimplementedonthreedifferentFPGAs.TheFPGAsusedwereaXilinx4010,anAlteraFlex800081188,andaNationalSemiconductorCLAy31.ThefirsttwoFPGAscanbecharacterizedasmedium-grainedarchitecturesandareapproximatelyequivalentinlogic-densitywhilethelastFPGAisafine-grainedarchitectureutilizingsmallerbutmorenumerouscells.ThemultiplicationrateofeachmultiplierislistedinMHzaswellasthepercentageoftheFPGArequiredtoimplementthemultiplier.Thebit-serialmultipliershavelistedboththeirclockrate(bit-rate)andtheireffectivemultiplicationrate(clockrate/2N).

2.3Multipliertablecontents

ThemajorityofthemultipliersinthisstudyusedcommonarchitecturessuchastheBaugh-Wooleytwo'scomplementparallel-arraymultiplier[5]andpipelinedversionsofthebit-serialmultiplier[6]showninFigure1.Inaddition,severalcustomparallelmultiplierswerebuiltthattakeadvantageofthespecialfeaturesavailableontheAlteraandXilinxFPGAs.TheseareintendedtorepresentneartheabsolutemaximumpossiblemultiplierperformancethatcanbeachievedwiththesecurrentFPGAs.Thesespecificcustomizationswillbediscussedbelow.

Table1.FPGAMultiplierPerformanceResults

TypeofMultiplier

#CLB/LC's

%ofFPGA

Mult.Speed

Altera81188ParallelMultipliers

8-bitunsignedfast-adder

8-bitsignedfast-adder

8-bitunsignedsynthesis

8-bitsignedsynthesis

8-bitsignedcomplexsynthesis

16-bitunsignedfast-adder

16-bitunsignedsynthesis

16-bitsignedsynthesis

133

150

129

135

584

645

519

535

13

14

12

13

57

63

51

53

14.8MHz

12.8MHz

7MHz

6.84MHz

5.86MHz

3.34MHz

3.66MHz

3.4MHz

Altera81188Bit-SerialMultipliers

8-bitunsigned

29

3

84.03/5.25MHz

8-bitsigned

91

9

69/4.6MHz

16-bitunsigned

61

7

68.49/2.14MHz

16-bitsigned

186

18

64/2MHz

NationalSemiconductorCLAyParallelMultipliers

8-bitunsigned

329

11

7.9MHz

8-bitsigned

338

11

7.2MHz

16-bitunsigned

1425

45

3.6MHz

16-bitsigned

1446

46

3.53MHz

NationalSemiconductorCLAyBit-SerialMultipliers

8-bitunsigned

48

1.5

32.2/2.01MHz

8-bitsigned

48

1.5

32.2/2.01MHz

16-bitunsigned

96

3

29.2/.91MHz

16-bitsigned

96

3

29.2/.91MHz

Xilinx4010ParallelMultipliers

8-bitunsigned

64

16

8.54MHz

16-bitsigned

259

65

4.35MHz

8-bitunsignedsynthesis

61

15

9MHz

8-bitsignedsynthesis

61

15

8MHz

8-bitsignedcomplexsynthesis

266

66

7.3MHz

16-bitunsignedsynthesis

242

60

3.8MHz

16-bitsignedsynthesis

250

63

3.7MHz

Xilinx4010Bit-SerialMultipliers

8-bitunsigned

17

4

73.1/4.6MHz

8-bitsigned

32

8

52/3.3MHz

16-bitunsigned

33

8

62/1.9MHz

16-bitsigned

64

16

50/1.6MHz

Xilinx4010ParallelConstantMultipliers

8-bitunsignedROM

22

5.5

21.7MHz

16-bitunsignedROM

84

21

11.36MHz

8-bitunsignedRAM

39

9.75

17.86MHz

16-bitunsignedRAM

117

29.3

10.4MHz

Severalofthemultiplierslistedinthetableshavethelabelsynthesisattached.Thislabelindicatesthatthemultiplierswerecreatedbysynthesizingsimplehigh-levelhardwarelanguage(VHDL)designstatements(z<=a*b).Thesemultiplierswereincludedsoastoallowacomparisonbetweenhand-placedmultipliersusingschematicsandhigh-levellanguagedesignedmultipliers.ThetableresultsshowthatthesynthesizedmultipliersperformedveryfavorablyasshownintheXilinx4010parallelmultipliertablesection.The8and16-bitunsignedandsignedarraymultiplierslistedfirstweredesignedwithschematicsandwerehandplacedontotheFPGA.However,theirperformancewasnearlyidenticalintermsofbothspeedandarearequiredtothemultiplierssynthesizedfromVHDL.

2.3.1Fastcarry-logicbasedparallelmultipliers

TheAltera81188basedmultiplierslabeledfastadderrefertotheuseofthefastcarry-logicavailableontheAlteraFPGAstomakefastripple-carryadders.Theseaddersarethenusedtobuildfastmultipliersbyusingtheadderstoaddthesuccessivepartialproductrows.ThistechniqueresultsinmultipliersthatareapproximatelytwiceasfastontheFPGAsasthosenotimplementedwithspeciallogic.ThedisadvantageofthisapproachistheresultingdifficultythatariseswiththeplacementofthemultiplierontotheFPGA.TheFPGArouterisonlyabletoplacethreeoftheunsigned8-bitmultipliersona81188FPGAeventhoughtheyonlyutilize13%ofthetotalFPGAresourceseach.

2.3.2Constantmultipliersanddistributedarithmetic

Theuseofconstants(constantmultiplicand)inmultiplicationcansignificantlyreducethesizeofaparallelmultiplierarray.Thisisbecausethepresenceofzerosintheconstantcanresultintheeliminationofmanypartialproducttermsinthemultiplicationarray.ThistechniqueisespeciallyusefulinDSPsystemssincemanyofthemultiplicationstobeperformedcanbespecifiedintermsofconstantmultipliers.Forexample,withanFIRfiltereachtapofthefiltercanbeimplementedusingamultiplierwithaconstanttapcoefficient.

Theuseofconstantsinmultiplicationalsomakesavailableanothertechniquethatcanresultinasignificantmultiplierperformanceincrease.ThistechniqueiscalledthedistributedarithmeticapproachtomultiplicationandcanbeimplementedbytheXilinxFPGAsduetotheirabilitytoprovidesmallblocksofdistributedRAMtobeusedaspartial-productlookuptables.

Thedistribute

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 求职职场 > 简历

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2