浅谈sdh技术及其应用.docx

上传人:b****1 文档编号:10649803 上传时间:2023-05-26 格式:DOCX 页数:32 大小:378.56KB
下载 相关 举报
浅谈sdh技术及其应用.docx_第1页
第1页 / 共32页
浅谈sdh技术及其应用.docx_第2页
第2页 / 共32页
浅谈sdh技术及其应用.docx_第3页
第3页 / 共32页
浅谈sdh技术及其应用.docx_第4页
第4页 / 共32页
浅谈sdh技术及其应用.docx_第5页
第5页 / 共32页
浅谈sdh技术及其应用.docx_第6页
第6页 / 共32页
浅谈sdh技术及其应用.docx_第7页
第7页 / 共32页
浅谈sdh技术及其应用.docx_第8页
第8页 / 共32页
浅谈sdh技术及其应用.docx_第9页
第9页 / 共32页
浅谈sdh技术及其应用.docx_第10页
第10页 / 共32页
浅谈sdh技术及其应用.docx_第11页
第11页 / 共32页
浅谈sdh技术及其应用.docx_第12页
第12页 / 共32页
浅谈sdh技术及其应用.docx_第13页
第13页 / 共32页
浅谈sdh技术及其应用.docx_第14页
第14页 / 共32页
浅谈sdh技术及其应用.docx_第15页
第15页 / 共32页
浅谈sdh技术及其应用.docx_第16页
第16页 / 共32页
浅谈sdh技术及其应用.docx_第17页
第17页 / 共32页
浅谈sdh技术及其应用.docx_第18页
第18页 / 共32页
浅谈sdh技术及其应用.docx_第19页
第19页 / 共32页
浅谈sdh技术及其应用.docx_第20页
第20页 / 共32页
亲,该文档总共32页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

浅谈sdh技术及其应用.docx

《浅谈sdh技术及其应用.docx》由会员分享,可在线阅读,更多相关《浅谈sdh技术及其应用.docx(32页珍藏版)》请在冰点文库上搜索。

浅谈sdh技术及其应用.docx

浅谈sdh技术及其应用

浅谈SDH技术及其应用

摘要

随着信息社会的到来,人们希望现代信息传输网络能快速、经济、有效地提供各种电路和业务,而上述网络技术由于其业务的单调性,扩展的复杂性,带宽的局限性,仅在原有框架内修改或完善已无济于事,此时SDH的产生并凭借其众多特性,使其在广域网领域和专用网领域得到了巨大的发展。

本文从SDH帧的详细论述了SDH的工作原理,SDH的常用网络拓扑、网络设备以及网络的保护机理。

在这些基础上介绍了SDH网络中常用设备的功能。

最后举例说明了其在现实中的应用和如何构建一个SDH网络。

近年来,SDH作为新一代理想的传输体系,具有路由自动选择能力,上下电路方便,维护、控制、管理功能强,标准统一,便于传输更高速率的业务等优点,能很好地适应通信网飞速发展的需要。

SDH技术与一些先进技术相结合,如光波分复用(WDM)、ATM技术、Internet技术(IPoverSDH)等,使SDH网络的作用越来越大。

SDH已被各国列入21世纪高速通信网的应用项目,是电信界公认的数字传输网的发展方向,具有远大的商用前景。

 

关键词:

SDH、、原理、网络、设备。

第1章SDH概述

1.1SDH产生的背景

同步数字系列(SynchronousDigitalHierarchy,缩写为SDH)是一种将复接、线路传输及交换功能融为一体、并由统一网管系统操作的综合信息传送网络,是美国贝尔通信技术研究所提出来的同步光网络(SONET)。

国际电话电报咨询委员会(CCITT)(现ITU-T)于1988年接受了SONET概念并重新命名为SDH,这使其成为不仅适用于光纤也适用于微波和卫星传输的通用技术体制。

它可实现网络有效管理、实时业务监控、动态网络维护、不同厂商设备间的互通等多项功能,能大大提高网络资源利用率、降低管理及维护费用、实现灵活可靠和高效的网络运行与维护。

SDH出现以前,沿用的数字传输设备均属准同步数字系( PlesiochronousDigitalHierarchy,缩写为PDH)。

SDH技术的诞生有着其必然性。

随着通信的发展,要求传送的信息不仅是话音,还有文字、数据、图像和视频等。

加之数字通信和计算机技术的发展,在70至80年代,陆续出现了T1(DS1)/E1载波系统(1.544/2.048Mbps)、X.25帧中继、ISDN(综合业务数字网)和FDDI(光纤分布式数据接口)等多种网络技术。

随着信息社会的到来,人们希望现代信息传输网络能快速、经济、有效地提供各种电路和业务,而上述网络技术由于其业务的单调性,扩展的复杂性,带宽的局限性,仅在原有框架内修改或完善已无济于事。

SDH就是在这种背景下发展起来的。

在各种宽带光纤接入网技术中,采用SDH技术的接入网系统是应用最普遍的。

SDH的诞生解决了由于入户媒质的带宽限制而跟不上骨干网和用户业务需求的发展,而产生了用户与核心网之间的接入"瓶颈"的问题,同时提高了传输网上大量带宽的利用率。

SDH技术自从90年代引入以来,至今已经是一种成熟、标准的技术,在骨干网中被广泛采用,且价格越来越低,在接入网中应用可以将SDH技术在核心网中的巨大带宽优势和技术优势带入接入网领域,充分利用SDH同步复用、标准化的光接口、强大的网管能力、灵活网络拓扑能力和高可靠性带来好处,在接入网的建设发展中长期受益。

1.2SDH的特点

SDH是数字传输体制上继PDH之后的一次划时代的飞跃。

SDH之所以能够快速发展这是与它自身的特点是分不开的,其具体特点如下:

(1)SDH传输系统在国际上有统一的帧结构,数字传输标准速率和标准的光路接口,使网管系统互通,因此有很好的横向兼容性,它能与现有的PDH完全兼容,并容纳各种新的业务信号,形成了全球统一的数字传输体制标准,提高了网络的可靠性;

(2)SDH接入系统的不同等级的码流在帧结构净负荷区内的排列非常有规律,而净负荷与网络是同步的,它利用软件能将高速信号一次直接分插出低速支路信号,实现了一次复用的特性,克服了PDH准同步复用方式对全部高速信号进行逐级分解然后再生复用的过程,由于大大简化了DXC,减少了背靠背的接口复用设备,改善了网络的业务传送透明性;

(3)由于采用了较先进的分插复用器(ADM)、数字交叉连接(DXC)、网络的自愈功能和重组功能就显得非常强大,具有较强的生存率。

因SDH帧结构中安排了信号的5%开销比特,它的网管功能显得特别强大,并能统一形成网络管理系统,为网络的自动化、智能化、信道的利用率以及降低网络的维管费和生存能力起到了积极作用;

(4)由于SDH有多种网络拓扑结构,它所组成的网络非常灵活,它能增强网监,运行管理和自动配置功能,优化了网络性能,同时也使网络运行灵活、安全、可靠,使网络的功能非常齐全和多样化;

(5)SDH有传输和交换的性能,它的系列设备的构成能通过功能块的自由组合,实现了不同层次和各种拓扑结构的网络,十分灵活;

(6)SDH并不专属于某种传输介质,它可用于双绞线、同轴电缆,但SDH用于传输高数据率则需用光纤。

这一特点表明,SDH既适合用作干线通道,也可作支线通道。

例如,我国的国家与省级有线电视干线网就是采用SDH,而且它也便于与光纤电缆混合网(HFC)相兼容。

(7)从OSI模型的观点来看,SDH属于其最底层的物理层,并未对其高层有严格的限制,便于在SDH上采用各种网络技术,支持ATM或IP传输;

(8)SDH是严格同步的,从而保证了整个网络稳定可靠,误码少,且便于复用和调整;

(9)标准的开放型光接口可以在基本光缆段上实现横向兼容,降低了联网成本。

第2章SDH的工作原理

帧结构及相应的信息格式是SDH的核心,它的结构会直接影响到传送业务的灵活性、对外兼容性和适应性。

2.1STM-N的帧结构

STM-N信号帧结构的安排应尽可能使支路低速信号在一帧内均匀、有规律的分布,以便于从高速信号中直接上/下低速支路信号。

因此,ITU-T规定了STM-N的帧是以字节为单位的矩形块状结构,如图2.1-1所示。

图2.1-1STM-N帧结构图

由图看见STM-N的信号是9行×270×N列的帧结构。

此处的N与STM-N的N相一致,取值范围:

1,4,16,64……。

表示此信号由N个STM-1信号通过字节间插复用而成。

由此可知,STM-1信号的帧结构是9行×270列的块状帧。

并且,当N个STM-1信号通过字节间插复用成STM-N信号时,仅仅是将STM-1信号的列按字节间插复用,行数恒定为9行不变。

我们知道,信号在线路上串行传输时是逐个比特(bit)地进行的,那么这个块状帧是怎样在线路上进行传输的呢?

STM-N信号的传输也遵循按比特的传输方式,SDH信号帧传输的原则是:

按帧结构的顺序从左到右,从上到下逐个字节,并且逐个比特地传输,传完一行再传下一行,传完一帧再传下一帧。

STM-N信号帧的重复频率(也就是每秒传送的帧数)是多少呢?

ITU-T规定对于任何级别的STM-N帧,帧频都是8000帧/秒,也就是帧的周期为恒定的125μs,帧中每个字节提供的通道速率是64Kbit/s。

由于帧周期的恒定使STM-N信号的速率有其规律性,例如STM-4的传输数速恒定的等于STM-1信号传输数速的4倍,STM-16恒定等于STM-1的16倍。

而PDH中的E2信号速率≠E1信号速率的4倍。

STM-N的帧结构由3部分组成:

段开销(SOH),包括再生段开销(RSOH)和复用段开销(MSOH);

管理单元指针(AU-PTR);

1、信息净负荷(payload)。

信息净负荷位于STM-N帧中第1到第9行,第9×N+1到第270×N列,共9×261×N个字节。

信息净负荷是在STM-N帧结构中存放将由STM-N传送的各种用户信息码块的地方。

信息净负荷区相当于STM-N这辆运货车的车箱,车箱内装载的货物就是经过打包的低速信号——待运输的货物。

为了实时监测货物(打包的低速信号)在传输过程中是否有损坏,在将低速信号打包的过程中加入了通道开销(POH)字节。

POH作为净负荷的一部分与信息码块一起装载在STM-N这辆货车上在SDH网中传送,它负责对打包的货物(低速信号)进行通道性能监视、管理和控制。

2、段开销(SOH)

段,相当于一条大的传输通道,段开销是为了保证信息净负荷正常传送所必须附加的网络运行、管理和维护(OAM)字节。

例如段开销可进行对STM-N这辆运货车中的所有货物在运输中是否有损坏进行监控,而通道开销(POH)的作用是当车上有货物损坏时,通过它来判定具体是哪一件货物出现损坏。

也就是说SOH完成对货物整体的监控,POH是完成对某一件特定的货物进行监控,当然,SOH和POH还有一些其他管理功能。

段开销又分为再生段开销(RSOH)和复用段开销(MSOH),可分别对相应的段层进行监控,二者的区别在于监管的范围不同。

举个简单的例子,若光纤上传输的是2.5G信号,那么,RSOH监控的是STM-16整体的传输性能,而MSOH则是监控STM-16信号中每一个STM-1的性能情况。

再生段开销在STM-N帧中的位置是第一到第三行的第一到第9×N列,共3×9×N个字节;复用段开销在STM-N帧中的位置是第5到第9行的第一到第9×N列,共5×9×N个字节。

3、管理单元指针(AU-PTR)

管理单元指针位于STM-N帧中第4行的第一到第9×N列,共9×N个字节。

AU-PTR是用来指示信息净负荷的第一个字节在STM-N帧内的准确位置的指示符,以便接收端能根据这个位置指示符的值(指针值)准确分离信息净负荷。

其实指针有高、低阶之分,高阶指针是AU-PTR,低阶指针是TU-PTR,TU-PTR的作用类似于AU-PTR,只不过所指示的信息负荷更小一些而已。

2.2SDH的复用结构和步骤

SDH的复用包括两种情况:

一种是由STM-1信号复用成STM-N信号;另一种是由PDH支路信号(例如2Mbit/s、34Mbit/s、140Mbit/s)复用成STM-N信号。

1、由STM-1信号复用成STM-N信号

复用的方法主要通过字节间插的同步复用方式来完成的,复用的基数是4,即4×STM-1→STM-4,4×STM-4→STM-16。

在复用过程中保持帧频不变(8000帧/秒),这就意味着高一级的STM-N信号是低一级的STM-n信号速率的4倍。

在进行字节间插复用过程中,各帧的信息净负荷和指针字节按原值进行字节间插复用,而STM-N的段开销并不是由所有低阶STM-N帧中的段开销间插复用而成,而是舍弃了某些低阶帧中的段开销。

2、由PDH支路信号复用成STM-N信号

各种PDH支路信号复用进STM-N帧的过程都要经历映射、定位、复用三个步骤。

映射相当于信号打包,定位伴随与指针调整,复用相当于字节间插复用。

ITU-T规定了一整套完整的映射复用结构,也就是映射复用路线,通过这些路线可将PDH的3个系列的数字信号以多种方法复用成STM-N信号。

ITU-T规定的复用路线如图2.1-2。

 

图2.1-2SDH复用映射结构

从图2.1-2中可以看到此复用结构包括了一些基本的复用单元:

C-容器、VC-虚容器、TU-支路单元、TUG-支路单元组、AU-管理单元、AUG-管理单元组,这些复用单元的下标表示与此复用单元相应的信号级别。

在图中从一个有效负荷到STM-N的复用路线不是唯一的,有多条路线(也就是说有多种复用方法)。

例如:

2Mbit/s的信号有两条复用路线,也就是说可用两种方法复用成STM-N信号。

必须说明,8Mbit/s的PDH支路信号是无法复用成STM-N信号的。

尽管一种信号复用成SDH的STM-N信号的路线有多种,但是,我国的光同步传输网技术体制规定了以2Mbit/s信号为基础的PDH系列(欧洲系列)作为SDH的有效负荷,并选用AU-4的复用路线,其结构见图2.1-3所示。

 

图2.1-3我国的SDH基本复用映射结构

 

第3章SDH的网络结构和网络保护机理

3.1基本的网络拓扑结构

SDH网是由SDH网元设备通过光缆互连而成的,网络节点设备(网元)和传输线路的几何排列就构成了网络的拓扑结构。

网络的有效性、可靠性和经济性在很大程度上与其拓扑结构有关。

网络拓扑的基本结构有链形、星形、树形、环形和网孔形,如图3.1-1所示。

链形网

链形网络拓扑是将网中的所有节点一一串联,而首尾两端开放。

这种拓扑的特点是较经济,在SDH网的早期用得较多,主要用于专网如铁路网中。

星形网

星形网络拓扑是将网中一网元做为中心节点设备与其他各网元节点相连,其他各网元节点之间互不相连,网元节点的业务都要经过这个特殊节点转接。

图3.1-1基本网络拓扑图

树形网

树形网络拓扑可看成是链形拓扑和星形拓扑的结合。

环形网

环形网拓扑实际上是指将链形拓扑首尾相连,从而使网上任何一个网元节点都不对外开放的网络拓扑形式。

这是当前使用最多的网络拓扑形式,主要是因为它具有很强的生存性,即自愈功能较强。

网孔形网

将所有网元节点两两相连,就形成了网孔形网络。

这种网络拓扑为两网元节点间提供多个传输路由,使网络的可靠更强。

但是由于系统的冗余度高,必会使系统有效性降低,成本高且结构复杂。

当前用得最多的网络拓扑是链形和环形,通过它们的灵活组合,可构成更加复杂的网络。

3.2链网和自愈环

传输网上的业务按流向可分为单向业务和双向业务。

以环网为例说明单向业务和双向业务的区别。

如图3.2-1所示。

图3.2-1环形网络

若A和C之间互通业务,A到C的业务路由假定是A→B→C,若此时C到A的业务路由是C→B→A,则业务从A到C和从C到A的路由相同,称为一致路由。

若此时C到A的路由是C→D→A,那么业务从A到C和业务从C到A的路由不同,称为分离路由。

我们称一致路由的业务为双向业务,分离路由的业务为单向业务。

常见组网的业务方向和路由如表3.2-1所示。

 

表3.2-1常见组网的业务方向和路由表

组网类型

路由

业务方向

链形网

一致路由

双向

 

双向通道环

一致路由

双向

双向复用段环

一致路由

双向

单向通道环

分离路由

单向

单向复用段环

分离路由

单向

3.2.1链行网

典型的链形网如图3.2.1-1所示。

图3.2.1-1链形网络图

链形网的特点是具有时隙复用功能,即线路STM-N信号中某一序号的VC可在不同的传输光缆段上重复利用。

如图3.2.1-1中A—B、B—C、C—D以及A—D之间通有业务,这时可将A—B之间的业务占用A—B光缆段X时隙(序号为X的VC,例如3#VC-4的第48个VC-12),将B—C的业务占用B—C光缆段的X时隙(第3#VC-4的第48个VC-12),将C—D的业务占用C—D光缆段的X时隙(第3#VC4的第48个VC-12),这种情况就是时隙重复利用。

这时A—D的业务因为光缆的X时隙已被占用,所以只能占用光路上的其它时隙Y时隙,例如第3#VC-4的第49个VC-12或者第7#VC-4的第48个VC-12。

链网的这种时隙重复利用功能,使网络的业务容量较大。

链网的最小业务量发生在链网的端站为业务主站的情况下,所谓业务主站是指各网元都与主站互通业务,其余网元之间无业务互通。

以图5.2.1-1为例,若A为业务主站,那么B、C、D之间无业务互通。

此时,C、B、D分别与网元A通信。

这时由于A—B光缆段上的最大容量为STM-N,则网络的业务容量为STM-N。

链网达到业务容量最大的条件是链网中只存在相邻网元间的业务。

如图3.2.1-1,此时网络中只有A—B、B—C、C—D的业务不存在A—D的业务。

这时时隙可重复利用,那么在每一个光缆段上业务都可占用整个STM-N的所有时隙,若链网有M个网元,此时网上的业务最大容量为(M-1)×STM-N,M-1为光缆段数。

常见的链网有二纤链——不提供业务的保护功能;四纤链——一般提供业务的1+1或1∶1保护。

四纤链中两根光纤收/发作主用信道,另外两根光纤收/发作备用信道。

3.2.2环网——自愈环

1、自愈的概念

所谓自愈是指在网络发生故障时,无需人为干预,网络自动地在极短的时间内(ITU-T规定为50ms以内),使业务自动从故障中恢复传输,使用户几乎感觉不到网络出了故障。

自愈仅是通过备用信道将失效的业务恢复,而不涉及具体故障的部件和线路的修复或更换。

所以故障的修复仍需人工干预才能完成,就象断了的光缆还需人工接续。

2、自愈环的分类

目前环形网络的拓扑结构用得很多,因为环形网具有较强的自愈功能。

自愈环的分类可按保护的业务级别、环上业务的方向、网元节点间光纤数等来划分。

按环上业务的方向可将自愈环分为单向环和双向环两大类;按网元节点间的光纤数可将自愈环划分为两纤环(一对收/发光纤)和四纤环(两对收发光纤);按保护方式还可将自愈环划分为通道保护环和复用段保护环两大类。

对于通道保护环,业务的保护是以通道为基础的,也就是保护的是STM-N信号中的某个VC通道,根据环上的某一个别通道信号的传输质量来决定是否倒换,通常利用收端是否收到简单的AIS信号来决定该通道是否应进行倒换。

复用段倒换环是以复用段为基础的,根据环上传输的复用段信号的质量决定是否倒换。

倒换是由K1、K2(b1~b5)字节所携带的APS协议来启动的。

复用段保护倒换的触发条件是LOF、LOS、MS-AIS告警信号。

通道保护环的倒换无需APS协议,采用“并发优收”的倒换机理---简单。

复用段保护环要使用APS协议,倒换机理---较复杂。

3、二纤单向通道保护环

二纤通道保护环由两根光纤组成两个环,其中一个为主环---S1;一个为备环---P1。

两环的业务流向一定要相反,通道保护环的保护功能是通过网元支路板的“并发优收”功能来实现的。

也就是支路板将支路上环业务“并发”到主环S1和备环P1上,两环上业务完全一样且流向相反,平时网元支路板“优收”主环上支路的业务,如图5.2.2-1所示。

若环网中网元A与C互通业务,网元A和C都将上环的支路业务“并发”到环S1和P1上,S1和P1上的所传业务相同且流向相反---S1逆时针,P1为顺时针。

在网络正常时,网元A和C都优收主环S1上的业务。

那么A与C业务互通的方式是A到C的业务经过网元D穿通,由S1光纤传到C(主环业务);由P1光纤经过网元B穿通传到C(备环业务)。

在网元C支路板“优收”主环S1上的A→C业务,完成网元A到网元C的业务传输。

网元C到网元A的业务传输与此类似。

当B-C光缆段的光纤同时被切断,因网元支路板的并发功能没有改变,也就是此时S1环和P1环上的业务还是一样的。

如图5.2.2-2所示。

由于B—C间光缆断,并不影响网元A到C的业务,这时网元A到C的业务并未中断,因此,网元C的支路板不进行保护倒换。

网元C的支路板将C到网元A去的业务并发到S1环和P1环上,由于B-C间光纤切断,使C到A的业务无法在S1主环上传送。

此时由于S1环上的C→A的业务传不过来,这时网元A的支路板收到S1光纤上的TU-AIS告警后,立即切换到选收P1备环光纤上的C到A的业务,于是C→A的业务得以恢复,完成环上业务的通道保护。

 

图3.2.2-1二纤单向通道倒换环

图3.2.2-2二纤单向通道倒换环

二纤单向通道保护倒换环由于上环业务是并发优收,所以通道业务的保护实际上是1+1保护。

倒换速度快,业务流向简捷明了,便于配置维护。

缺点是网络的业务容量不大。

二纤单向保护环的业务容量恒定是STM-N,与环上的节点数和网元间业务分布无关。

二纤单向通道环多用于业务集中的情况。

4、二纤双向复用段保护环(二纤共享复用段保护环)

将每根光纤的前一半时隙传送主用业务,后一半时隙(例如STM-16系统的9#~16#STM-1)传送额外业务,也就是说一根光纤的保护时隙用来保护另一根光纤上的主用业务。

例如,S1/P2光纤上的P2时隙用来保护S2/P1光纤上的S2业务,每一条光纤的前一半容量(时隙)是主用信道,后一半容量(时隙)是备用信道,两根光纤上业务流向相反。

二纤双向复用段保护环的保护机理如图3.2.2-1和图3.2.2-2所示。

在网络正常情况下,网元A到网元C的主用业务放在S1/P2光纤的S1时隙(对于STM-16系统,主用业务只能放在STM-N的前8个时隙1#~8#STM-1[VC-4]中),备用业务放于P2时隙(对于STM-16系统只能放于9#~16#STM-1[VC-4]中),沿光纤S1/P2由网元B穿通传到网元C,网元C从S1/P2光纤上的S1、P2时隙分别提取出主用和额外业务。

网元C到A的主用业务放于S2/P1光纤的S2时隙,额外业务放于S2/P1光纤的P1时隙,经网元B穿通传到网元A,网元A从S2/P1光纤上提取相应的业务。

见图3.2.2-3。

图3.2.2-3二纤双向复用段保护环

在环网B-C间光缆段被切断时,网元A到网元C的主用业务沿S1/P2光纤传到网元B,在网元B进行环回(故障邻近点的网元环回),环回是将S1/P2光纤上S1时隙的业务全部环到S2/P1光纤上的P1时隙上去(例如STM-16系统是将S1/P2光纤上的1#—8#STM-1[VC-4]全部环到S2/P1光纤上的9#~16#STM-1[VC-4]),此时S2/P1光纤P1时隙上的额外业务被中断。

然后沿S2/P1光纤经网元A和D穿通传到网元C,在网元C执行环回功能(故障端点站),即将S2/P1光纤上的P1时隙所载的网元A到网元C的主用业务环回到S1/P2的S1时隙,网元C提取该时隙的业务,完成接收网元A到网元C的主用业务。

见图3.2.2-4。

网元C到网元A的业务先由网元C将其主用业务S2环回加载到S1/P2光纤的P2时隙上,这时P2时隙上的额外业务中断。

然后沿S1/P2光纤经网元D和A穿通到达网元B,在网元B处执行环回功能---将S1/P2光纤的P2时隙业务环到S2/P1光纤的S2时隙上去,经S2/P1光纤传到网元A落地。

通过以上方式完成了环网在故障时业务的自愈。

 

图3.2.2-4二纤双向复用段保护环

二纤双向复用段保护环的业务容量为四纤双向复用段保护环的1/2,即M/2(STM-N),其中M是节点数。

二纤双向复用段保护环在组网中使用得较多,主要用于622M和2.5G系统,也是适用于业务分散的网络。

5、二纤单向通道保护环和二纤双向复用段保护环的比较

当前组网中常见的自愈环只有二纤单向通道保护环和二纤双向复用段保护环两种,下面将二者进行比较。

业务容量(仅考虑主用业务)

单向通道保护环的最大业务容量是STM-N,二纤双向复用段保护环的业务容量为M/2×STM-N(M是环上节点数)。

复杂性

二纤单向通道保护环,无论从实现控制的复杂性,还是设备的开发和制作难度来说,都是各种倒换环中最简单的。

由于它不涉及APS的协议处理过程,因而业务倒换时间也最短。

二纤双向复用段保护环的控制逻辑和设备开发制作则是各种倒换环中最复杂的。

兼容性

二纤单向通道保护环仅使用已经完全预定好了的规则,由通道AIS信号来触发倒换,与现行SDH标准完全相容,因而也容易满足多厂家产品兼容性要求。

二纤双向复用段保护环使用APS协议控制倒换,而APS协议尚未标准化,所以复用段倒换环目前都不能满足多厂家产品兼容性的要求。

第4章SDH的主要设备

SDH设备是实现光同步传输网的重要物理手段。

S

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > IT计算机

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2