Matlab与通信仿真课程设计报告.docx

上传人:b****3 文档编号:10669260 上传时间:2023-05-27 格式:DOCX 页数:79 大小:1.43MB
下载 相关 举报
Matlab与通信仿真课程设计报告.docx_第1页
第1页 / 共79页
Matlab与通信仿真课程设计报告.docx_第2页
第2页 / 共79页
Matlab与通信仿真课程设计报告.docx_第3页
第3页 / 共79页
Matlab与通信仿真课程设计报告.docx_第4页
第4页 / 共79页
Matlab与通信仿真课程设计报告.docx_第5页
第5页 / 共79页
Matlab与通信仿真课程设计报告.docx_第6页
第6页 / 共79页
Matlab与通信仿真课程设计报告.docx_第7页
第7页 / 共79页
Matlab与通信仿真课程设计报告.docx_第8页
第8页 / 共79页
Matlab与通信仿真课程设计报告.docx_第9页
第9页 / 共79页
Matlab与通信仿真课程设计报告.docx_第10页
第10页 / 共79页
Matlab与通信仿真课程设计报告.docx_第11页
第11页 / 共79页
Matlab与通信仿真课程设计报告.docx_第12页
第12页 / 共79页
Matlab与通信仿真课程设计报告.docx_第13页
第13页 / 共79页
Matlab与通信仿真课程设计报告.docx_第14页
第14页 / 共79页
Matlab与通信仿真课程设计报告.docx_第15页
第15页 / 共79页
Matlab与通信仿真课程设计报告.docx_第16页
第16页 / 共79页
Matlab与通信仿真课程设计报告.docx_第17页
第17页 / 共79页
Matlab与通信仿真课程设计报告.docx_第18页
第18页 / 共79页
Matlab与通信仿真课程设计报告.docx_第19页
第19页 / 共79页
Matlab与通信仿真课程设计报告.docx_第20页
第20页 / 共79页
亲,该文档总共79页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

Matlab与通信仿真课程设计报告.docx

《Matlab与通信仿真课程设计报告.docx》由会员分享,可在线阅读,更多相关《Matlab与通信仿真课程设计报告.docx(79页珍藏版)》请在冰点文库上搜索。

Matlab与通信仿真课程设计报告.docx

Matlab与通信仿真课程设计报告

《MATLAB与通信仿真》课程设计

 

指导老师:

张水英、汪泓

 

 

班级:

07通信

(1)班

学号:

E07680104

姓名:

林哲妮

 

目的和要求……………………………………………………………………1

实验环境………………………………………………………………………1

具体内容及要求………………………………………………………………1

实验内容

题目一…………………………………………………………………………4

题目内容

流程图

程序代码

仿真框图

各个参数设置

结果运行

结果分析

题目二………………………………………………………………………8

题目内容

流程图

程序代码

仿真框图

各个参数设置

结果运行

结果分析

题目三………………………………………………………………………17

题目内容

流程图

程序代码

仿真框图

各个参数设置

结果运行

结果分析

题目四………………………………………………………………………33

题目内容

流程图

程序代码

仿真框图

各个参数设置

结果运行

结果分析

心得与体会…………………………………………………………………52

目的和要求

通过课程设计,巩固本学期相关课程MATLAB与通信仿真所学知识的理解,增强动手能力和通信系统仿真的技能。

在强调基本原理的同时,更突出设计过程的锻炼。

强化学生的实践创新能力和独立进行科研工作的能力。

要求学生在熟练掌握MATLAB和simulink仿真使用的基础上,学会通信仿真系统的基本设计与调试。

并结合通信原理的知识,对通信仿真系统进行性能分析。

实验环境

PC机、Matlab/Simulink

具体内容及要求

基于MATLAB编程语言和SIMULINK通信模块库,研究如下问题:

(1)研究BFSK在加性高斯白噪声信道下(无突发干扰)的误码率性能与信噪比之间的关系;

(2)研究BFSK在加性高斯白噪声信道下(有突发干扰)的误码率性能与信噪比之间的关系;分析突发干扰的持续时间对误码率性能的影响。

(3)研究BFSK+信道编码(取BCH码和汉明码)在加性高斯白噪声信道下(无突发干扰)的误码率性能与信噪比之间的关系;分析不同码率对误码率性能的影响。

比较不同信道编码方式的编码增益性能。

(4)研究BFSK+信道编码(取BCH码和汉明码)在加性高斯白噪声信道下(有突发干扰)的误码率性能与信噪比之间的关系;分析突发干扰的持续时间对误码率性能的影响。

分析不同码率对误码率性能的影响。

比较不同信道编码方式的编码增益性能。

题目一

题目内容:

研究BFSK在加性高斯白噪声信道下(无突发干扰)的误码率性能与信噪比之间的关系

流程图

 

 

 

不是

 

程序代码:

clc

clear

echoon%x表示信噪比

x=0:

15;%y表示信号的误码比特率,它的长度与x相同

y=x;%BFSK调治的频率间隔等于24kHz

FrequencySeparation=24000;%信源产生信号的bit率等于10kbit/s

BitRate=10000;%仿真时间设置为10秒

SimulatonTime=10;%BFSK调质信号每一个符号的抽样数等于2

SamplesPerSymbol=2;

fori=1:

length(x)%信道的信噪比依次取X中的元素

SNR=x(i);%运行仿真程序,得到的误码率保存在工作区变量BitErrorRate中

sim('shiyanyi1');%计算BitErrorRate的均值作为本次仿真的误码率

y(i)=mean(BitErrorRate);

end

%准备一个空白的空间

%holdoff;

figure

%绘制x和y的关系曲线图,纵坐标采用对数表示

semilogy(x,y,'-*');%对y取对数画图

xlabel('信噪比');%写X坐标

ylabel('误码率');%写y坐标

title('BFSK在无突发干扰下误码率与信噪比的关系');%写标题

gridon;%画网格图

仿真框图

各个参数设置

RandomIntegerGeneratorM-FSKModulatorBaseband

AWGNChannel

ToWorkspace

运行结果

结果分析:

BFSK在无突发干扰下误码率随着信噪比的增大而减小

 

题目二

题目内容:

研究BFSK在加性高斯白噪声信道下(有突发干扰)的误码率性能与信噪比之间的关系;分析突发干扰的持续时间对误码率性能的影响。

1BFSK(有突发干扰)误码率与信噪比的关系

2突发干扰的持续时间对误码率的影响:

1突发干扰突发尺寸不同,误码率如何变化?

2突发干扰占空比不同,误码率如何变化?

第一小题

流程图:

程序代码:

clc

clearall

x=0:

10;%x表示信噪比

y=x;%y表示信号的误码比特率,它的长度与x相同

fori=1:

length(x)

SNR=x(i);%信道的信噪比依次取X中的元素

sim('rwer31');%运行仿真程序得到的误码率保存在工作区变量BitErrorRate中

y(i)=max(BitErrorRate);%计算BitErrorRate的最大值作为本次仿真的误码率

end

semilogy(x,y,'-p');%对y取对数画图

xlabel('信噪比');%写X坐标

ylabel('误码率');%写y坐标

title('BFSK在突发干扰下误码率与信噪比关系');%写标题

gridon;%画网格图

仿真框图

各个参数设置

RandomIntegerGeneratorHammingEncoder

 

M-FSKModulatorBasebandAWGNChannel

SignalFromWorkspaceReshape

运行结果

结果分析:

在有突发状况的情况下(信号为[ones(1,200)zeros(1,45)]'),误码率随着信噪比的增加而减小,在此参数数据下减小的幅度不大。

第二小题(突发尺寸不同)

流程图:

程序代码:

clc

clearall

x=0:

10:

100;%x表示信噪比

fori=1:

length(x)%信道的信噪比依次取X中的元素

SNR=3;%取信噪比为3

w=x(i);%w表示突发信号的尺寸,它的长度取x矩阵的值

sim('rwer4');%运行仿真程序得到的误码率保存在工作区变量Pe中

y(i)=max(Pe);%计算Pe的最大值作为本次仿真的误码率

end

semilogy(x,y,'-p');%对y取对数画图

xlabel('突发尺寸');%写X坐标

ylabel('误码率');%写y坐标

title('突发干扰的持续时间对误码率性能');%写标题

gridon;%画网格图

仿真框图

各个参数设置

RandomIntegerGeneratorM-FSKModulatorBaseband

AWGNChannelSignalFromWorkspace

ReshapeErrorRateCalculation

运行结果

结果分析:

在信噪比SNR=3的情况下,当突发尺寸由0到100变化时,误码率增加

第二小题(占空比不同)

流程图:

 

程序代码:

clc

clearall

m=0:

5:

50;

fori=1:

length(m)%i取m的长度

w=m(i);%w表示突发信号的占空比,它的长度取x矩阵内的值

sim('rwer5');%运行仿真程序得到的误码率保存在工作区变量Pe中

y(i)=max(Pe);%计算Pe的均值作为本次仿真的误码率y(i)

x(i)=w/(200-w);%计算占空比x

end

semilogy(x,y,'-p');%对y取对数画图

xlabel('突发尺寸所占比例');%写X坐标

ylabel('误码率');%写y坐标

title('BFSK突发干扰的持续时间对误码率性能的影响');%写标题

gridon;%画网格图

仿真框图:

各个参数设置

RandomIntegerGeneratorM-FSKModulatorBaseband

AWGNChannelSignalFromWorkspace

ReshapeErrorRateCalculation

运行结果

结果分析:

在信噪比SNR=1.156的情况下,当占空比由0到0.35变化时,误码率在占空比很小时保持不变,随着占空比的增加,误码率逐渐上升。

 

题目三

题目内容:

研究BFSK+信道编码(取BCH码和汉明码)在加性高斯白噪声信道下(无突发干扰)的误码率性能与信噪比之间的关系;分析不同码率对误码率性能的影响。

比较不同信道编码方式的编码增益性能。

1BFSK+汉明码误码率与信噪比的关系

2BFSK+汉明码在不同码率下误码率与信噪比的关系

3BFSK+BCH码误码率与信噪比的关系

4BFSK+BCH码在不同码率下误码率与信噪比的关系

5BCH码与汉明码误码率的比较

第一小题

流程图:

程序代码:

clc

clear

x=0:

0.5:

5;%设定x的值为0-5之间间隔为0.5的各个数

fori=1:

length(x)

SNR=x(i);%信道的信噪比依次取X中的元素

sim('rwsan1');%运行仿真程序得到的误码率保存在工作区变量Pe中

y(i)=mean(Pe);%计算Pe的均值作为本次仿真的误码率

end

semilogy(x,y,'-p');%对y取对数画图

xlabel('信噪比');%写X坐标

ylabel('误码率');%写y坐标

title('BFSK+汉明码误码率与信噪比关系');%写标题

gridon;%画网格图

仿真框图

各个参数设置

RandomIntegerGeneratorHammingEncoder

M-FSKModulatorBasebandAWGNChannel

M-FSKDemodulatorBasebandHammingDecoder

运行结果

结果分析:

当BFSK使用汉明码编码时随着信道的噪声比的增加误码率快速下降。

 

第二小题

流程图:

 

程序代码:

clc

clear

x=0:

0.5:

5;%设定x的值为0-5之间间隔为0.5的各个数

fori=1:

length(x)

N=7;%设定Codeword的长度

M=3;%设定Message的长度

Samplesperframe=4;%设定Samplesperframe要等于Codeword的长度与Message的长度的差值相等

SNR=x(i);%信道的信噪比依次取X中的元素

sim('rwsan2');%运行仿真程序得到的误码率保存在工作区变量Pe中

y(i)=mean(Pe);%计算Pe的均值作为本次仿真的误码率

end

semilogy(x,y,'->');%对y取对数画图

xlabel('信噪比');%写X坐标

ylabel('误码率');%写y坐标

title('BFSK+汉明码在不同码率下误码性能');%写标题

holdon;

fori=1:

length(x)

N=15;%设定Codeword的长度

M=4;%设定Message的长度

Samplesperframe=11;%设定Samplesperframe要等于Codeword的长度与Message的长度的差值相等

SNR=x(i);%信道的信噪比依次取X中的元素

sim('rwsan2');%运行仿真程序得到的误码率保存在工作区变量Pe中

y(i)=mean(Pe);%计算Pe的均值作为本次仿真的误码率

end

semilogy(x,y,'-o');%对y取对数画图

holdon;

fori=1:

length(x)

N=31;%设定Codeword的长度

M=5;%设定Message的长度

Samplesperframe=26;%设定Samplesperframe要等于Codeword的长度与Message的长度的差值相等

SNR=x(i);%信道的信噪比依次取X中的元素

sim('rwsan2');%运行仿真程序得到的误码率保存在工作区变量Pe中

y(i)=mean(Pe);%计算Pe的均值作为本次仿真的误码率

end

semilogy(x,y,'-p');%对y取对数画图

gridon;%画网格图

仿真框图

各个参数设置

RandomIntegerGeneratorHammingEncoder

M-FSKModulatorBasebandAWGNChannel

 

M-FSKDemodulatorBasebandHammingDecoder

运行结果

结果分析:

当BFSK使用汉明码编码时在相同信噪比的情况下,码率不同误码率也不同。

在信噪比比较小时很难分辨误码率相差不大,当误码率在4-4.5之间时就会有很大的去区别,可以看到,码率越小的误码率越大。

 

第三小题

流程图:

程序代码:

clc

clear

x=0:

0.5:

5;%设定x的值为0-5之间间隔为0.5的各个数

fori=1:

length(x)

SNR=x(i);%信道的信噪比依次取X中的元素

sim('rwsan31');%运行仿真程序得到的误码率保存在工作区变量Pe中

y(i)=mean(Pe);%计算Pe的均值作为本次仿真的误码率

end

semilogy(x,y,'-p');%对y取对数画图

xlabel('信噪比');%写X坐标

ylabel('误码率');%写y坐标

title('BFSK+BCH误码率于信噪比关系');%写标题

gridon;%画网格图

仿真框图

各个参数设置

RandomIntegerGeneratorBCHEncoder

M-FSKModulatorBasebandAWGNChannel

M-FSKDemodulatorBasebandBCHDecoder

运行结果

结果分析:

当BFSK使用BCH编码时随着信噪比的增加误码率逐渐减少。

第四小题

流程图:

 

程序代码:

clc

clear

x=0:

0.5:

5;%设定x的值为0-5之间间隔为0.5的各个数

fori=1:

length(x)

N=7;%设定Codeword的长度

K=4;%设定Message的长

Sampleperframe=4;%设定Samplesperframe要等于Message的长度相等

SNR=x(i);%信道的信噪比依次取X中的元素

sim('rwsan4');%运行仿真程序得到的误码率保存在工作区变量Pe中

y(i)=mean(Pe);%计算Pe的均值作为本次仿真的误码率

end

semilogy(x,y,'-p');%对y取对数画图

xlabel('信噪比');%写y坐标

ylabel('误码率');%写X坐标

title('BFSK+BCH码(无干扰)在不同码率下误码率性能');%写标题

holdon;

fori=1:

length(x)

N=15;%设定Codeword的长度

K=11;%设定Message的长

Sampleperframe=11;%设定Samplesperframe要等于Message的长度相等

SNR=x(i);%信道的信噪比依次取X中的元素

sim('rwsan4');%运行仿真程序得到的误码率保存在工作区变量Pe中

y(i)=mean(Pe);%计算Pe的均值作为本次仿真的误码率

end

semilogy(x,y,'->');%对y取对数画图

holdon;

fori=1:

length(x)

N=31;%设定Codeword的长度

K=26;%设定Message的长

Sampleperframe=26;%设定Samplesperframe要等于Message的长度相等

SNR=x(i);%信道的信噪比依次取X中的元素

sim('rwsan4');%运行仿真程序得到的误码率保存在工作区变量Pe中

y(i)=mean(Pe);%计算Pe的均值作为本次仿真的误码率

end

semilogy(x,y,'-o');%对y取对数画图

gridon;

仿真框图

各个参数设置

RandomIntegerGeneratorBCHEncoder

M-FSKModulatorBasebandAWGNChannel

M-FSKDemodulatorBasebandBCHEncoder

运行结果

结果分析:

当BFSK使用BCH编码时在相同信噪比的情况下,码率不同误码率也不同。

在信噪比比较小时很难分辨误码率相差不大,当误码率在1.5-5之间时就会有很大的去区别,可以看到,码率越小的误码率越大。

 

第五小题

流程图:

程序代码:

clc

clear

x=0:

0.5:

5;%设定x的值为0-5之间间隔为0.5的各个数

fori=1:

length(x)

SNR=x(i);%信道的信噪比依次取X中的元素

sim('rwsan1');%运行仿真程序得到的误码率保存在工作区变量Pe中

y(i)=mean(Pe);%计算Pe的均值作为本次仿真的误码率

end

semilogy(x,y,'-p');%对y取对数画图

xlabel('信噪比');%写X坐标

ylabel('误码率');%写y坐标

title('BCH与汉明码误码率比较');%写标题

gridon;%画网格图

holdon;

fori=1:

length(x)

SNR=x(i);%信道的信噪比依次取X中的元素

sim('rwsan31');%运行仿真程序得到的误码率保存在工作区变量Pe中

y(i)=mean(Pe);%计算Pe的均值作为本次仿真的误码率

end

semilogy(x,y,'->');%对y取对数画图

holdon;

仿真框图

各个参数设置

RandomIntegerGeneratorHammingEncoder

M-FSKModulatorBasebandAWGNChannel

M-FSKDemodulatorBasebandHammingDecoder

BCHEncoderBCHDecoder

运行结果

结果分析:

当BFSK使用BCH编码和汉明码编码时在相同信噪比的情况下,误码率也不同。

在信噪比比较小时(0-0.5),很难分辨误码率,相差不大。

当误码率在1-5之间时就会有很大的去区别,可以看到,汉明码在相同的信噪比下误码率比BCH小。

 

题目四

题目内容:

研究BFSK+信道编码(取BCH码和汉明码)在加性高斯白噪声信道下(有突发干扰)的误码率性能与信噪比之间的关系;分析突发干扰的持续时间对误码率性能的影响。

分析不同码率对误码率性能的影响。

比较不同信道编码方式的编码增益性能。

1.BFSK+汉明码(有突发干扰)误码率性能与信噪比的关系

2.突发干扰的持续时间对误码率的影响:

1突发干扰突发尺寸不同,误码率如何变化?

2突发干扰占空比不同,误码率如何变化?

3.BFSK+BCH码(有突发干扰)误码率性能与信噪比的关系

4.突发干扰的持续时间对误码率的影响:

1突发干扰突发尺寸不同,误码率如何变化?

2突发干扰占空比不同,误码率如何变化?

第一小题

流程图:

程序代码:

clc

clearall

x=1:

10;%设定x的值为0-10之间的各个数

fori=1:

length(x)

SNR=x(i);%信道的信噪比依次取X中的元素

sim('rwsi11');%运行仿真程序得到的误码率保存在工作区变量Pe中

y(i)=mean(Pe);%计算Pe的均值作为本次仿真的误码率

end

semilogy(x,y,'-p');%对y取对数画图

xlabel('信噪比');%写X坐标

ylabel('误码率');%写y坐标

title('BFSK+汉明码(有突发干扰)误码率性能与信噪比关系');%写标题

gridon;%画网格图

仿真框图

各个参数设置

RandomIntegerGeneratorHammingEncoder

M-FSKModulatorBasebandAWGNChannel

SignalFromWorkspaceReshape

运行结果

结果分析:

当BFSK使用汉明码编码时,在有突发状况的情况下(信号为[ones(1,200)zeros(1,45)]'),误码率随着信噪比的增加而减小,在误码率在0-5之间时,下降幅度不大,在误码率为5-10时,下降幅度逐渐增大。

第二小题(突发尺寸不同)

流程图:

程序代码:

clc

clearall

W=1:

10:

100;%x表示信噪比

fork=1:

length(W)%信道的信噪比依次取X中的元素

SNR=3;%取信噪比为3

l=W(k);%w表示突发信号的尺寸,它的长度取x矩阵的值

sim('rwsi22');%运行仿真程序得到的误码率保存在工作区变量Pe中

y(i)=mean(Pe);%计算Pe的最大值作为本次仿真的误码率

end

semilogy(x,y,'-p');%对y取对数画图

xlabel('突发尺寸');%写X坐标

ylabel('误码率');%写y坐标

title('突发干扰的持续时间对误码率性能');%写标题

gridon;%画网格图

仿真框图

各个参数设置

RandomIntegerGeneratorHammingEncoder

AWGNChannelSignalFromWorkspace

M-FSKModulatorBasebandM-FSKDemodul

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 自然科学 > 物理

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2