湿法磷酸生产原理及生产方法的选择.docx

上传人:b****3 文档编号:10696672 上传时间:2023-05-27 格式:DOCX 页数:20 大小:237.09KB
下载 相关 举报
湿法磷酸生产原理及生产方法的选择.docx_第1页
第1页 / 共20页
湿法磷酸生产原理及生产方法的选择.docx_第2页
第2页 / 共20页
湿法磷酸生产原理及生产方法的选择.docx_第3页
第3页 / 共20页
湿法磷酸生产原理及生产方法的选择.docx_第4页
第4页 / 共20页
湿法磷酸生产原理及生产方法的选择.docx_第5页
第5页 / 共20页
湿法磷酸生产原理及生产方法的选择.docx_第6页
第6页 / 共20页
湿法磷酸生产原理及生产方法的选择.docx_第7页
第7页 / 共20页
湿法磷酸生产原理及生产方法的选择.docx_第8页
第8页 / 共20页
湿法磷酸生产原理及生产方法的选择.docx_第9页
第9页 / 共20页
湿法磷酸生产原理及生产方法的选择.docx_第10页
第10页 / 共20页
湿法磷酸生产原理及生产方法的选择.docx_第11页
第11页 / 共20页
湿法磷酸生产原理及生产方法的选择.docx_第12页
第12页 / 共20页
湿法磷酸生产原理及生产方法的选择.docx_第13页
第13页 / 共20页
湿法磷酸生产原理及生产方法的选择.docx_第14页
第14页 / 共20页
湿法磷酸生产原理及生产方法的选择.docx_第15页
第15页 / 共20页
湿法磷酸生产原理及生产方法的选择.docx_第16页
第16页 / 共20页
湿法磷酸生产原理及生产方法的选择.docx_第17页
第17页 / 共20页
湿法磷酸生产原理及生产方法的选择.docx_第18页
第18页 / 共20页
湿法磷酸生产原理及生产方法的选择.docx_第19页
第19页 / 共20页
湿法磷酸生产原理及生产方法的选择.docx_第20页
第20页 / 共20页
亲,该文档总共20页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

湿法磷酸生产原理及生产方法的选择.docx

《湿法磷酸生产原理及生产方法的选择.docx》由会员分享,可在线阅读,更多相关《湿法磷酸生产原理及生产方法的选择.docx(20页珍藏版)》请在冰点文库上搜索。

湿法磷酸生产原理及生产方法的选择.docx

湿法磷酸生产原理及生产方法的选择

湿法磷酸生产原理及生产方法的选择

湿法磷酸生产原理及生产方法的选择

摘要

目前国内外磷酸的生产工艺主要有“热法”和“湿法”两种。

二者相比较,湿法磷酸的工艺特点是产品成本相对较低,但是质量较差,且对磷矿的品位和杂质含量都有较高的要求,尽管如此,二水物法还是得到了广泛的应用,目前国际上制备工业磷酸主要采用湿法。

二水物法湿法磷酸生产工艺的研究开发和反应槽、过滤机等主要设备设计技术的日臻成熟和完善,为二水物法湿法的大规摸工业化生产打下了坚实的基础。

在二水物法湿法磷酸生产过程中,由于磷矿与硫酸的反应速率与磷矿的细度密切相关,因此矿浆送入反应槽之前磷矿石一般需经过粉碎(中碎)和研磨(细碎)两个工序。

湿法研磨流程短、生产能力大,这就加快萃取工序的反应速度。

湿法磷酸生产过程中,制得粒大、均匀、稳定的二水物和α半水物硫酸钙结晶,便于过滤分离和洗涤干净是十分重要的问题。

关键词:

湿法磷酸,二水物法

 

一湿法磷酸生产的基本原理

工业上制取磷酸的方法有两种:

一种是用强无机酸(主要用硫酸)分解磷矿制得磷酸,称湿法磷酸,又称萃取磷酸,主要用于制造高效肥料;另一种是在高温下将天然磷矿中的磷升华,而后氧化、水合制成磷酸,称为热法磷酸,主要用于生产工业磷酸盐、牲畜和家禽的辅助饲料。

本设计主要讨论湿法磷酸。

1.1湿法磷酸生产的基本原理

用酸(硫酸、硝酸、盐酸等)分解磷矿制得的磷酸统称湿法磷酸,而用硫酸分解磷矿制取磷酸的方法是湿法磷酸生产中最主要的方法。

即用硫酸处理天然磷矿[主要成分为3Ca(PO4)2•CaF2]分解,生成磷酸溶液及难溶性的硫酸钙沉淀。

其总化学反应式如下:

Ca5F(PO4)3+5H2SO4+5nH2O===3H3PO4+5CaSO4·nH2O+HF

实际上,反应分两步进行。

第一步是磷矿和循环料浆(或返回系统的磷酸)进行顶分解反应,循环的料浆中含有磷酸且循环量很大,磷矿首先溶解在过量的磷酸溶液中生成磷酸一钙:

Ca5F(PO4)3+7H3PO4===5Ca(H2PO4)2+HF↑

这一步称为预分解。

预分解是防止磷矿粉直接与浓硫酸反应,避免反应过于猛烈而使生成的硫酸钙覆盖于矿粉表面,阻碍磷矿进一步分解,同时也防止生成难于过滤的细小硫酸钙。

第二步为上述的磷酸一钙料浆与稍过量的硫酸反应生成硫酸钙结晶与磷酸溶液:

Ca(H2PO4)2+5H2SO4+5nH2O===5CaSO4·nH2O+10H3PO4

硫酸钙可以三种不同的水合结晶形态从磷酸溶液中沉淀出来,其生成条件主要取决于磷酸溶液中的磷酸浓度、温度以及游离硫酸浓度。

根据生产条件的不同,可以生成二水硫酸钙(CaSO4·2H2O)、半水硫酸钙(CaSO4·

H2O)和无水硫酸钙(CaSO4)三种,故上述CaSO4·nH2O中的n可以等于2、

或0。

相应地生产中有三种基本方法即二水物法、半水物法和无水物法。

反应中生成的HF即与磷矿中带入的SiO2生成H2SiF6。

6HF+SiO2===H2SiF6+2H2O

H2SiF6又与SiO2反应生成SiF4气体。

2H2SiF6+SiO2===3SiF4↑+2H2O

可见,气相中的氟主要以SiF4的形式存在,用水吸收后生成氟硅酸水溶液并析出硅胶沉淀

3SiF4+(n+2)H2O===2H2SiF6+SiO2·nH2O↓

磷矿中的铁、铝、钠、钾等杂质将发生下述反应:

(Fe,Al)2O3+2H3PO4===2(Fe,Al)PO4↓+3H2O

(Na,K)2O+H2SiF6===(Na,K)2SiF6↓+H2O

镁主要存在于碳酸盐中,磷矿中的碳酸盐,如白云石、方解石等首先被硫酸分解并放出CO2。

CaCO3+H2SO4===CaSO4+H2O+CO2↑

CaCO3·MgCO3+2H2SO4===CaSO4+MgSO4+2H2O+2CO2↑

生成的镁盐全部进入磷酸溶液中,对磷酸质量和后加工将带来不利的影响。

1.2硫酸钙在CaSO4-H3PO4-H2O与CaSO4-H3PO4-H2SO4-H2O体系的相平衡及转化动力学

二水物硫酸钙(CaSO4·2H2O)只有一种晶型;半水物硫酸钙(CaSO4·

H2O)有α-型和β-型两种晶型;无水物硫酸钙(CaSO4)有三种晶型(无水物Ⅰ、无水物Ⅱ和无水物Ⅲ)。

但是,与湿法磷酸生产过程有关的晶型只有二水物、α-半水物和无水物Ⅱ三种。

它们的一些物理常数和理论化学组成列于表1.1。

 

表1.1硫酸钙结品的某些物理常数及化学组成

结晶形态

俗名

密度

g/cm3

理论化学组成/%

CO2

CaO

H2O

CaSO4·2H2O

生石膏(或石膏)

2.32

46.6

32.5

20.9

α-CaSO4·

H2O

熟石膏

2.73

55.2

38.6

6.2

CaSO4Ⅱ

硬石膏

2.99

58.8

41.2

0

4-H3PO4-H2O三无体系的相平衡

图1.1是CaSO4-H3PO4-H2O三元体系的相平衡图。

此图也可称为转化多温图或不同温度下硫酸钙不同晶型的转化示意图。

图中AB线为二水物

无水物热力学平衡曲线,虚线CD为二水物

半水物介稳平衡曲线。

这两条曲线将此图分为三个区域(区域Ⅰ、Ⅱ、Ⅲ)。

由此图可从热力学上得到以下四点结论:

①在CaSO4-P2O5-H2O体系中,硫酸钙只有两种稳定晶型:

二水物(区域Ⅰ)和无水物(区域Ⅱ、Ⅲ)。

②在三个区域中,硫酸钙结晶的转化顺序为:

区域名称不稳态→介稳态→稳定态

区域Ⅰ半水物→无水物→二水物

区域Ⅱ半水物→二水物→无水物

区域Ⅲ二水物→半水物→无水物

③在AB线上,二水物与无水物具有相同的稳定性,在溶液中能同时存在,处于平衡。

在CD线上,惟一的稳定固相是无水物。

④在80℃下,二水法磷酸的理论最高浓度约为33%P2O5。

从图1.1看出.当磷酸浓度高于33%P2O5时,首先析出的半水物将直接转化为无水物,得不到二水物结晶,故不能实现二水物流程。

上述CaSO4-P2O5-H2O三元相图的分析,为湿法磷酸生产提供了理论依据。

(3)硫酸钙在CaSO4-H3PO4-H2SO4-H2O四元体系的相平衡

CaSO4-P2O5-H2O三元体系的研究结果只有当反应料浆液相中Ca2+与SO42-浓度以等物质的量存在时才有意义。

但是在湿法磷酸生产中,硫酸都是过量的,即体系中有大量SO42-存在。

应用三元相图进行分析就会产生较大的偏差,因此研究CaSO4-H3PO4-H2SO4-H2O四元体系是很有必要的。

图1.2为此四元体系相图。

此图是不完全的,只表示了半水物

二水物转化过程的一部分。

图中曲线是在给定的H2SO4含量(以SO3%表示)下平衡点的移动轨迹。

线以上是半水物的介稳定区,线以下是二水物的稳定区,当SO3=0%时,即是三元体系的结果。

图1.2表明,当增大H2SO4含量后,半水物

二水物的平衡点将向降低磷酸浓度和温度的方向移动。

根据此图的数据得出,当温度一定时,四元体系中的半水物

二水物转化平衡的轨迹是一条线性很好的直线,可用下面的直线方程式表示:

SO3%=(A·CP2O5+B)%(1-1)

式中CP2O5代表省去百分号(%)的磷酸中P2O5含量,A及B是直线的斜率和截距,随体系的温度改变而异。

现已求出不同温度时的A值及B值如表1.2。

图1.1CaSO4-P2O5-H2O体系平衡图

AB—二水物

无水物热力学平衡曲线

CD—二水物

半水物介稳平衡曲线

表1.2不同温度下的A及B值

体系温度/℃

A值

B值

50

-0.944

38.0

55

-0.928

36.4

60

-0.925

34.7

65

-0.915

32.9

70

-0.901

30.2

75

-0.891

28.2

80

-0.885

25.4

 

图1.2CaSO4-H3PO4-H2SO4-H2O四元体系平衡图

应用式(1-1)与表1.2可以更确切地解释和说明生产中的实际问题。

如采用二水物流程生产22%P2O5的磷酸时,在反应温度为80℃时,按式(1-1)计算得到的二水物

半水物转化过程平衡点的极限SO3%应为:

SO3%=(-0.885×22+25.4)%=5.93%(1-2)

很明显,若平衡点的SO3含量超过此值则会进人半水物的介稳区域而得不到二水物结晶。

但是如果降低温度则平衡点的SO3含量将相应提高,这就是在较低温度条件下可以允许有较高SO3含量的道理。

二水物法生产中,液相SO3含量均远低于式(1-2)的计算值,即使采用含杂质较高的中品位磷矿,在磷酸含量为22%P2O5、湿度为80℃条件下,液相SO3含量的高限控制范围实际上大多在4%左右(约相当于0.05g/ml),显著低于上式计算的5.93%SO3值,因此生成稳定的二水物结晶并顺利实现二水物法生产是没有问题的。

此外,四元体系研究结果还可根据硫酸与磷酸混酸中不同的硫酸含量来解释再结晶流程中的半水物六

水物转化过程。

(4)CaSO4-H3PO4-H2O体系转化动力学

(1)转化动力学研究的实际意义

前面介绍的CaSO4-P2O5-H2O体系平衡图仅从热力学角度讨论了含不同结晶水的硫酸钙在磷酸水溶液中相互转化的顺序与溶液浓度和温度的关系。

但仅了解热力学研究结果是不够的,因为热力学的讨论不涉及硫酸钙结晶的转化速度。

而动力学与研究转化速度.对于实际生产具有重要的现实意义。

实验得出,硫酸钙结晶在磷酸水溶液中的转化速度,快的仅在结晶产生后的瞬间发生,慢的可以延续到数月仍没有达到完全转化。

这种转化速度的差异为湿法磷酸生产方法的选择提供了重要的理论依据。

在二水物法生产中,由图1.1可见,工艺条件(主要指磷酸浓度与反应温度)的选择似乎应该在区域Ⅰ内,因为在区域Ⅰ内,二水物是惟一的稳定晶形。

但实际上却不能选择此区,这是因为在区域Ⅰ内需要维持的磷酸溶液温度很低(40℃以下),这种低温不但对磷矿分解与硫酸钙结晶不利,而且要移去大量反应热,在工业上也很难办到,故二水物法的工艺条件实际上是在区域Ⅱ进行选择的,其磷酸浓度范围一般为20%~30%P2O5,反应温度为65~80℃。

然而从图1.1可见,二水物在区域Ⅱ内并不是处于稳定态而是处于介稳态,该区处于稳定态的晶形是无水物。

(2)80℃下,半水物到二水物与无水物的转化动力学

在二水物法的生产中,由于半水物形成晶核需要的活化能最小,故首先析出的是处于不稳态的半水物,然后再转变为介稳态的二水物并最终转变为稳定态的无水物。

因此,研究80℃下它们之间的转化动力学具有指导意义。

80℃,半水物

二水物的转化平衡点发生在磷酸溶液含33%P2O5时,故当磷酸溶液的质量分数高于33%P2O5,转化顺序为半水物→无水物;低于33%P2O5,转化顺序为半水物→二水物→无水物。

80℃下半水物转化为二水物在磷酸质量分数为l0%~25%P2O5的磷酸溶液中进行得很快。

当磷酸质量分数为10%P2O5时,1小时内即能完全转化;当质量分数为18%P2O5时约2小时;在25%P2O5时约为6~7小时。

随着磷酸中P2O5含量的提高,转化时间也相应增加。

至于转化形成的介稳态二水物再继续转化为稳定态的无水物则进行极慢。

当磷酸质量分数为30%、19.6%与12.75%P2O5时,所需的完全转化时间分别为10天、19天及78天。

上述完全转化时间是包括结晶转化潜期时间与实际转化期所需时间之和。

现以半水物转化为二水物为例,所谓转化潜期是指在此期间内,半水物结晶保持不变,主要是进行新相的萌发,转化过程实际上不曾开始。

实际转化期则是指半水物结晶开始转变为二水物结晶,其结晶水含量随时间的变化而变化。

以上分析表明,在二水法实际生产条件下(磷酸质量分数一般为20%~25%P2O5。

反应时间5~6小时)半水物到二水物可以达到完全转化。

所以,从半水物到二水物和从二水物到无水物的相对转化速度可以看出,在图1.1的区域Ⅱ内,二水物虽然处于介稳态,但由于半水物转化为二水物很快,而二水物转化为稳定态的无水物极慢(可表示为半水物

二水物

无水物);因此可以认为,在热力学上处于介稳态的二水物从动力学观点上看则是相对稳定的,故在此条件下可以顺利地实现一水物法的生产。

由于硫酸钙结晶在磷酸溶液中的转化时间除与磷酸中P2O5含量及反应温度有关外,还和溶液的H2SO4含量及回浆操作有关。

实际生产中过量的硫酸将大大地促进半水物到二水物的转化。

同时由于酸解反应槽多采用有大量循环料浆(回浆)的连续式生产,新结晶可在原有结晶基础上成长,故也可大大加快半水物到二水物的转化过程。

因此,由于过量硫酸与回浆的作用,实际生产的反应时间还可进一步缩短。

1.3磷矿的酸分解过程

磷矿被硫酸分解的反应过程是液-固相反应,其反加速率主要与反应温度、氢离子浓度、矿粒的有效表面积和液膜中的扩散等因素有关。

因此,提高反应温度与氢离子浓度,提高矿粉细度以增大向矿粒的有效表面积、提高搅拌强度以增大向矿粒表面的扩散速度,均可以强化反应过程并提高磷矿的分解速度。

提高磷矿分解率还应注意避免“钝化膜”的生成。

这是因为硫酸分解磷矿时.生成的硫酸钙结晶会在磷矿颗粒表面逐渐形成一层薄膜并包裹在颗粒表面,使磷矿的继续分解受到阻碍,这种阻碍将会减慢磷矿的分解速度甚至中止分解过程。

形成的薄膜称为“固态膜”,如果生成的固态膜对反应物及反应产物透过性很差则称为“钝化膜”、这种现象称为“钝化现象”。

试验得出,“钝化现象”与H2SO4含量、磷酸中P2O5含量及反应温度有关,当磷酸中P2O5含量与反应温度愈高时,形成“钝化膜”时对应的H2SO4含量将愈低。

在二水物法的生产条件下,由于H2SO4含量、磷酸中P2O5含量与反应温度均不高,故不会发生“钝化现象”。

但是要注意:

当提高磷酸中P2O5含量及温度后.产生“钝化现象”所对应的H2SO4含量是会显著降低的。

关于酸分解磷矿的动力学,国内外进行过许多研究。

酸(包括硫酸、磷酸、硝酸、盐酸等)分解磷矿的化学反应都是在磷矿颗粒表面上进行的。

在磷矿颗粒表面通常都存在一个不流动的界面层,反应物(指H+)必须扩散通过界面层,到达磷矿颗粒表面才能起反应。

当采用硫酸或磷酸分解磷矿时,由于生成了固态产物(硫酸钙或磷酸钙盐),在磷矿颗粒表面上可能沉积形成固态产物膜,固态膜的可透性程度对酸分解磷矿反应速度影响甚大。

湿法磷酸生产中,磷矿的酸解实际上是在硫酸-磷酸混酸中进行。

磷矿的分解与硫酸钙的结晶是同时进行的,随着液相中硫酸浓度的增高,析出的硫酸钙结晶覆盖在磷矿颗粒表面上形成膜的趋势越大,将延缓磷矿分解反应的进行,使磷矿分解不完全,造成P2O5的损失。

研究表明,在无晶种的情况下,溶液中硫酸钙的表观溶度积与平衡溶度积之比大于2.5时,矿粒就会被生成的硫酸钙所包裹。

因此,为使磷矿分解完全,在稳定的工艺条件下进行浸取是非常重要的。

通常使用的磷矿粉粒度为:

>160μm为20~30%,>125μm为30~40%,>80μm为40%。

反应活性高的磷矿,粒度可以稍粗些;反之,要求粒度粗一些。

[1]

1.4硫酸钙的结晶过程

结晶过程都包括晶核的生成和晶粒成长两个阶段。

如晶核的生成速率超过成长速率,便得到为数很多的细粒结晶;若晶体的成长速率大于晶核的生成速率,便可得到为数较少的粗粒结晶。

因此改变影响晶核生成速率和晶粒成长速率的因素,就能控制晶粒的大小。

晶核是在溶液过饱和状态下形成的。

一般说,晶核形成的多少是随过饱和度的升高而增加的。

当过饱和度不大时,晶核只能在已有的表面上生成,如反应物料颗粒表面、结晶器器壁以及溶液中其他固体表面。

加入品种可以人为地控制溶液的过饱和度以减少晶核的生成量。

在等温结晶过程中。

随着溶液的过饱和度逐渐减小,结晶过程逐渐减慢,但由于晶体的成长,晶体的总表面扩大了,又可使结晶加快。

因此,在整个结晶过程中,结晶速率起初急剧加快,当达到一极大值后才迅速下降。

当升高温度时,溶液过饱和度减小,此时结晶的稳定性降低,会导致结晶的晶粒部分溶解。

温度急剧降低,会使溶液中过饱和度急剧增加,产生细小结晶。

晶体的成长是一种扩散过程。

此过程不仅在垂直于晶体表面的方向上成长。

而且还决定于物质结晶面的运动。

如晶体在各个方向的成长速率相同,晶体的形状就会是圆的。

圆球形晶体的表面能最小,极易过滤洗涤。

实际上晶体是多面体,这是由于晶体结构各个部分的成长速率不同。

晶体各个部分的成长速率所以不同。

是因为对于不同的晶面,溶液的饱和浓度不同,因而溶液的过饱和浓度与晶体表面的饱和浓度差也不相等造成的。

有些物质或杂质能够干扰硫酸钙的结晶。

它们可以改变晶核形成条件、晶体的长大速度及晶体的外形。

经研究得出:

一定的温度下,磷酸溶液中稍过量的硫酸根离子将使二水硫酸钙的结晶向长的方向进行,而稍过量的钙离子则将使二水硫酸钙的结晶向长的方向进行。

稍过量的铁、铝杂质在溶液中呈酸性磷酸盐,特使二水硫酸钙的结晶向晶粒宽的方向进行。

而铁的硫酸盐、磷酸盐在磷酸溶液中使磷酸溶液粘度增加,从而使二水硫酸钙的结晶向晶粒长的方向进行。

有时某些杂质会吸附到晶面上,遮盖了晶体表面的活性区域,而使晶体成长速率减慢,有时使晶体长成畸形。

某些杂质会使溶液变得粘稠,在这种情况下,晶体表面上的扩散受到妨碍,而只能在晶体的凸出部分堆集,使晶体形成针状或树枝状。

硫酸钙的结晶及分离是二水物法磷酸生产中的重要问题,要使二水硫酸结晶粗大、均匀而又较稳定,必须控制生产过程中磷酸浓度、温度、过量硫酸、磷矿杂质及保证溶液的过饱和度有足够的维持时间,在有回浆的二水物法萃取磷酸生产中,还必须注意有晶种的回浆量,控制二水物结晶速度,这些都是制定工艺流程、工艺条件及确定相应设备的依据。

[2]

 

二湿法磷酸生产方法选择论证

根据上述硫酸钙的结晶形态,工业上有下述几种湿法磷酸生产方法。

2.1二水法制湿法磷酸

这是目前世界上应用最广泛的一种方法,有多槽流程和单槽流程,其少又分为无回浆流程和有回桨流程以及真空冷却和空气冷却流程。

二水湿法磷酸生产包括酸解(磷矿分解反应)与过滤(磷酸与磷石膏的分离)两个主要工序。

从原料工段送来的矿浆经计量后进入酸解(萃取)槽,硫酸经计量槽用硫酸泵送入酸解槽,通过自控调节确保矿浆和硫酸按比例加入。

酸解得到的磷酸和磷石膏的混合料浆用料浆泵送至盘式过滤机进行过滤分离。

为了降低酸解反应槽中料浆温度,采用真空冷却。

酸解槽排出的含氟气体通过卧式错流多级填料尾气洗涤器进行洗涤。

净化尾气经排风机和排气筒排空。

过滤所得的石膏滤饼经洗涤后送到磷石膏厂内堆场。

滤饼采用三次逆流洗涤流程,冲洗过滤机滤盘及地坪的污水送至污水封闭循环系统。

各次滤洗液集于气液分离器的相应格内,经气液分离后,滤洗液也相应进入滤洗液中间槽的滤洗液格内。

滤液磷酸经滤液泵,一部分送到磷酸中间槽贮存。

生产磷铵时,用泵将磷酸送往磷铵工段的尾气洗涤塔;另一部分返回一洗液格内。

一洗液由一洗液泵全部送到酸解槽。

二洗液和三洗液分别经二洗液泵与三洗液泵返回过滤机逆流洗涤滤饼。

吸干液经气液分离器进滤洗液中间槽三洗液格内。

水环真空泵的压出气则送至过滤机作反吹石膏渣卸料用。

过滤工序所需真空由水环式真空泵产生。

抽出的气体经冷凝器用水冷却。

真空泵冷却水集中在冷却水池,通过泵送至冷凝器作冷却水。

二水法所得磷酸一般含P2O528%~32%,磷的总收率为93%~97%。

造成磷的总收率不高的原因在于;①洗涤不完全;②磷矿的萃取不完全(通常与磷矿颗粒表面形成硫酸钙膜有关);③磷酸溶液陷入硫酸钙晶体的空穴中;④磷酸一钙[Ca(H2PO4)2·H2O]结晶层与硫酸钙结晶层交替生长;⑤HPO42-取代了硫酸钙晶格中的SO42-(有人解释为形成了CaSO4·2H2O与CaHPO4·2H2O的固溶体);⑥溢出、泄漏、清洗、蒸汽雾沫夹带等机械损失。

为了减少除洗涤不完全和机械损失以外的其他导致磷损失的因素,采用了将硫酸钙溶解再结晶的方法,如半水-二水法,二水-半水法等。

2.2半水-二水法制湿法磷酸

此法的特点是先使硫酸钙形成半水物结晶析出,再水化重结晶为二水物。

这样,可使硫酸钙晶格中所含的P2O5释放出来,P2O5的总收率可达98%~98.5%,同时,也提高了磷石膏的纯度,扩大了它的应用范围。

半水-二水法流程分为两种:

一种称为稀酸流程,即半水结晶不过滤而直接水化为二水物再过滤分离,产品酸质量分数(P2O5)为30%~32%;另一种称为浓酸流程,即过滤半水物抖浆分出成品酸后,再将滤饼送入水化槽重结晶为二水物,产品酸含P2O554%左右。

2.3二水物-半水物法制湿法磷酸

在生产过程中控制硫酸钙生成二水结晶,再使二水物转化为半水物,回收二水物中夹带的P2O5,最终结晶以半水物形式析出。

此法特点是P2O5总收率高(99%左右),磷石膏结晶水少,产品磷酸含P2O535%左右。

2.4半水物法制湿法磷酸

在生产过程中控制硫酸钙结晶以半水物形式析出,可得含P2O540%~50%的磷酸。

该法关键是半水物结晶的钝化,即半水物在洗涤过程中不水化,滤饼短期内不硬结。

近年来,在掌握钝化半水物生成机理后,工业广已建成日产量600t(P2O5)的大厂。

2.5生产工艺的确定

因为在生产过程中,选择什么具体的方法来进行生产,对我们的产品有重要的影响,它不仅影响到产品的质量,而且对整个生产过程的经济效益、生产效率、环境的保护、废物的处理等,都会有较大的影响。

所以对二水物法(见表2.1)、半水物法(见表2.2)、二水物-半水物法(见表2.3)进行比较,主要观察它们是否更加实用。

由化工知识可知,而睡无法得动力学和转化速度等,对实际生产重要的具有现实意义。

表2.1二水物法的优缺点

流程

优点

缺点

 

①设计简单

②矿种可以改变

③工艺成熟

④操作和停车方便

⑤只需普通不锈钢

⑥磷矿可以湿磨

⑦处理较为方便

⑧产品的废物相对容易处理

⑨更加适合我省的磷矿特点

①酸含有较多的Al和F

②生产28%~30%P2O5

③磷酸需要蒸汽进行蒸发

④收率为95%左右

⑤可能需要磨矿

⑥需要30%P2O5磷酸的贮槽和蒸发器

⑦蒸发前后有继沉淀

⑧生产商品酸需要澄清

⑨产相当的废水、废气、废渣

⑩由于废物没有被有效的利用而导致损失

表2.2半水物法的优缺点

流程

优点

缺点

①一般过滤

②直接制得高浓度(40~45%P2O5)磷酸

③生产的磷酸较纯

④不需要贮存空间

⑤继沉淀量不多,澄清简单

⑥可用较粗粒度矿粉

⑦操作方便

⑧磨矿费用较低

①迄今工业上只用过有限的矿种

②生产50%P2O5酸需要较大过滤面积,磷损失大,收率低(92%)

③生产半水物不纯,洗水流量有限,不可用矿浆进料

④不能用湿矿生产50%P2O5酸

⑤结晶小

⑥过滤速度较低

⑦过滤机满溢会造成较大损失

⑧硫酸用量对总收率异常敏感,不能使用稀硫酸

⑨需要较高级的合金材料,设计和停车均需仔细

⑩半水物晶型不够稳定,易水化,石膏质量差

表2.3二水物-半水物法的优缺点

流程

优点

缺点

二水物-半水无法

①矿种可以改变

②工艺成熟

③生产线半水物

④较高的得率(98%)

⑤较高浓度的磷酸(>32~33%P2O5)

⑥较低的硫酸用量

①两段分离,开工率地

②投资费用高,转化需要蒸汽,需要35%P2O5磷酸的贮存和蒸发器,蒸发前后有继沉淀,生产商品酸需要澄清,不可用矿浆进料,洗水比低

③需要半水物最后再水化成石膏,工厂规模最大取于500t/d

④通常需要磨矿,溶解的杂质较多

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 自然科学 > 物理

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2