西门子PG燃气轮机检修规程.docx

上传人:b****3 文档编号:10972055 上传时间:2023-05-28 格式:DOCX 页数:90 大小:5.51MB
下载 相关 举报
西门子PG燃气轮机检修规程.docx_第1页
第1页 / 共90页
西门子PG燃气轮机检修规程.docx_第2页
第2页 / 共90页
西门子PG燃气轮机检修规程.docx_第3页
第3页 / 共90页
西门子PG燃气轮机检修规程.docx_第4页
第4页 / 共90页
西门子PG燃气轮机检修规程.docx_第5页
第5页 / 共90页
西门子PG燃气轮机检修规程.docx_第6页
第6页 / 共90页
西门子PG燃气轮机检修规程.docx_第7页
第7页 / 共90页
西门子PG燃气轮机检修规程.docx_第8页
第8页 / 共90页
西门子PG燃气轮机检修规程.docx_第9页
第9页 / 共90页
西门子PG燃气轮机检修规程.docx_第10页
第10页 / 共90页
西门子PG燃气轮机检修规程.docx_第11页
第11页 / 共90页
西门子PG燃气轮机检修规程.docx_第12页
第12页 / 共90页
西门子PG燃气轮机检修规程.docx_第13页
第13页 / 共90页
西门子PG燃气轮机检修规程.docx_第14页
第14页 / 共90页
西门子PG燃气轮机检修规程.docx_第15页
第15页 / 共90页
西门子PG燃气轮机检修规程.docx_第16页
第16页 / 共90页
西门子PG燃气轮机检修规程.docx_第17页
第17页 / 共90页
西门子PG燃气轮机检修规程.docx_第18页
第18页 / 共90页
西门子PG燃气轮机检修规程.docx_第19页
第19页 / 共90页
西门子PG燃气轮机检修规程.docx_第20页
第20页 / 共90页
亲,该文档总共90页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

西门子PG燃气轮机检修规程.docx

《西门子PG燃气轮机检修规程.docx》由会员分享,可在线阅读,更多相关《西门子PG燃气轮机检修规程.docx(90页珍藏版)》请在冰点文库上搜索。

西门子PG燃气轮机检修规程.docx

西门子PG燃气轮机检修规程

燃气轮机检修规程

一燃气轮机本体

1概述

1.1通用设计特点

西门子PG燃气轮机是单轴单缸型机器。

它们适用于在以基荷运行或调峰运行的电厂以定速驱动发电机。

它们能用于联合循环发电与地区集中供热。

它们能烧液态燃料如轻燃料油。

或具有不同热值气态燃料,如天然气或高炉煤气。

1.2外部结构

单缸单轴燃气轮机的主要组件是压气机与透平,这两个组件有共用的转子,转子只靠在压力区的外面两个轴承支撑。

这能确保恒定的对中正确与良好的运转质量。

压气机与透平还有一个共用的装置,即压力保持不变的外部壳体,它有三个机壳段分布在前轴承座与透平外壳之间。

直接连接到前轴承座的铸件是初始级压气机。

连接到这个铸件末端的是一局部是柱体,一局部是锥体的焊接段,把一个静叶持环围圈起来;而静叶持环是悬空挂起的;以便于热膨胀,第三个压气机抽气口以与燃烧器留有余地。

第三个柱形焊接的壳体有燃烧室与透平静叶持环。

当栓接一起时,外部壳体与前轴承架形成一个巩固的圆筒体,将运输当中保持的弯曲应力与扭矩力传送到上部而没有多大的变形。

水平的机壳连接便于进展维护工作。

前轴承座包含着组合的径向轴承与推力轴承。

前轴承座是固定在一个环上,而环落座在由六根肋条支撑的两个横向支架上,而径向肋条指引进气的流向。

在压气机上游处有一进气结构,空气就是从这个结构引起来的,可以把转子卸下而不必卸下进口轴。

排气室包括一个巩固的单件缸。

它支撑着透平轴承。

五根肋片直接将衬套连接到外室。

废气是由排气室衬套指引的。

因为衬套是依照能调节热膨胀而给支撑的。

排气室把透平静叶持环连接到排气扩压器上。

可以把透平轴承在扩压器侧面轴向地卸下来。

1.3转子

转子由许多圆盘〔叶轮〕组成每个圆盘有一个圆叶片与三个空心轴部件;由一个带预应力的中央联杆把三个部件固定在一起。

圆盘上的Hirth型外表锯齿〔facialserrations〕和空心轴与圆盘对中心,使径向膨胀自由展开,并传输扭矩。

这个转子的结构能产生一个有相当硬度的自支承鼓筒,具有较高的临界转速与相对低的重量。

透平转子在部冷却。

少量的压缩空气从压气机末端的主流〔量〕中渗流出去,又通过外部的冷却器输进。

头一圈运作的叶片从压气机出口得到空气,然后经流部空心轴中的孔而进入转子。

接着下面运作的叶片圈得到低压低温的空气。

冷却空气流流经压气机圆盘中的孔而进入转子部,再经过下游压气机圆盘里的圆盘衬套上的孔,经过把最后的压气机圆盘与最先的透平圆盘连起来的管道,再经过透平圆盘上的衬套孔,进入到第2圈,第3圈,第4圈的叶片。

最后冷却空气进入热态气体流。

使衬套包满一层薄薄的冷空气。

这种冷空气流能确保作为支撑部件的转子缸能浸没在来自四面八方的空气中,甚至浸没在透平部件中,而阻止产生额外的热应力;如果在负荷改变与急骤启动时,这种新增加的热应力能使转子变形。

所有压气机动叶都能拆卸安装而不必取出转子。

1.4静叶持环与其支撑

压气机灼热的后部静叶环与透平静叶都装在静叶持环中;持环能拆卸安装而不用取出转子。

垂直提升地将上部静叶持环卸下后,下部静叶持环能旋转180°,也能被提升起来。

所有静叶持都是由外部壳体悬吊起来的,以便使静态的与运作的部件能自由产生热膨胀。

位于偏心轴套上的销钉能确保相对于轴中心线的静叶持环,有正确的同心度在垂直中心线的顶部与底部,进展微调时,旋转偏心轴套。

如果要调节轴向位移,可使用一个旋转对称的导向键与键槽件。

压气机件中的环形间隙能渗出足够的空气,确保压气机在低速,特别是在启动与停车时能稳定的工作。

四条渗出线都与缓冲阻尼器相连,通向排气扩压器,此外,冷却空气线使透平静态叶片圈2与圈4以与排气箱得到在压气机位置抽出的冷却空气,因为这个位置有适宜的压力。

压气机导向叶片第一圈的间距是可变的。

导杆将外部叶片末端的枢轴连到一调节环上,调节环依圆周方向旋转。

改变这些导向叶片的间距,就能将压气机吸入空气的容量调节到启动、停机与局部负载操作所需要的量。

接着出现的静态叶片圈的叶片结实地固定在有燕尾叶片根的环上。

这些环装入外部箱或静态静叶持环的圆周槽里。

对转子与振动缓冲阻尼的密封是靠部环来得到的,与部环相连的叶片都与枢轴或T形叶片根相配。

如果旋转静态静叶上的环与配套的环,就可得到取下这些叶片所要求的间距,即两个邻近圈旋转叶片之间的间距。

透平静叶与其外部围带都安装在静叶持环外表的相应槽沟里。

第2圈到第4圈的部围带附盖在扇形环上,将转子密封住。

静叶持环与所有透平叶片都经压缩空气冷却。

这些压缩空气经过静叶持环与外部围带之间的中空地带,也经过空心的导向叶片。

在第1圈到第3圈,这种空气流从叶片出来进入热气流洗提器而在第2圈到第4圈时,这种空气流既充当冷却剂,也充当部迷宫式密封。

1.5燃烧室

燃烧室由一环状火焰筒与24个燃烧器组成。

火焰筒是一个双筒型,包括一个中心体和一个压力套筒。

前者封住转子,没有壳体中分面,后者被中分面水平横截,燃烧器都在这一局部。

热屏蔽保护这三个铸件不受热气流的浸入。

冷却空气流从压气机出口扩压器出来,就分道扬镖:

绝大局部通过燃烧器的对角线旋流器进入燃烧地区。

一小局部空气流使火焰筒中的热屏蔽板冷却。

外部室与火焰筒压力套筒都有人孔;通过人孔可以进入火焰筒的部。

热屏蔽与燃烧器都可以通过人孔进展检查与换新,〔如有必要的话〕。

使用窥镜从这里可以达到下游的第2圈的叶片。

环状燃烧空间中的24个燃烧器能产生相当均匀的温度,分布在透平的上游。

2主要技术规

2.1燃气轮机型号:

SGT5-4000F(V94.3A)

2.2制造厂:

电气

2.3产品编号:

800628、800691

2.4型式:

单轴、环形燃烧室、冷端输出、侧向进气、轴向排气

2.5额定功率:

272MW(ISO工况)/259MW(性能保证工况)

2.6热效率:

37.7%

2.7点火转速:

400rpm

2.8自持转速:

1560r/min

2.9压气机:

15级轴流式,压比17

2.10透平级数:

4级

2.11燃烧室型式:

环型燃烧室

2.12转子结构型式:

中心拉杆轮盘式

2.13燃烧器个数:

24个

2.14透平动叶进口初温:

1230°C

2.15进气系统:

自清洁过滤系统

2.16燃机排气压力:

33.87hPa(ISO)

2.17燃机排气温度:

591/594°C

2.18燃机排气流量:

648/647kg/s

2.19天然气压力:

~2.87MPa

2.21工作转速:

3000r/min

2.22临界转速:

1300r/min

2.23外形尺寸、重量:

 

图2:

燃机的外型尺寸和重量

序号

项目

重量约(kg)

尺寸(mm)

L×W×H或L×D

1

压气机轴承缸上半

压气机轴承缸下半

9100

9100

1300x4050x2050

1300x4050x2050

2

压气机静叶装配组件1上半(包括IGV附件)压气机静叶装配组件1下半(包括IGV附件)

21,500

3050x3250x1550

3

压气机静叶装配组件2上半

压气机静叶装配组件2下半

6000

6000

1200x2700x1350

1200x2700x1350

4

2缸上半

2缸上半

11,300

11,300

1350x5050x2350

1350x5050x2350

5

24个燃烧器

2000

1000x400

6

3缸上半

3缸上半

24,200

24,200

3150x5050x2350

3150x5050x2350

7

燃烧室外壳上半

燃烧室外壳下半

3600

3600

1250x4100

1250x4100

8

燃烧室壳

11,600

1700x3100

9

转子

81,400

9750x3250

10

透平静叶装配组件上半

透平静叶装配组件下半

14,800

14,800

1750x4050x1900

1750x4050x1900

11

透平轴承缸与衬

17,700

1800x4300

*

燃机压气机和重(5%的公差)

308,000

12

中间轴

5,290

13

压气机轴承外盖

413

14

排气扩散段

3,128

3检修策略与检修周期

3.1概述

燃机的特性是使用空气作为工作介质,并直接将燃料喷入压缩空气中。

其中包函的染污物和灰尘能引起结垢和腐蚀。

燃机的另一个特性是高温运行,这能引起热应力和金属疲劳,也能造成热通道部件的氧化。

如其它机械,燃机也会在运行过程中磨损,通过维护来发现并控制磨损,同时可以修复或更换磨损件。

只要维护得当,尽管有上述特性,燃机也能够保持较高的运行可靠性和可用性。

制造商的维护说明书是集合了一大批燃机的维护经验编成的,并不断更新。

维护措施的效力主要是依赖于运行与制造商之间的信息与经验的交流。

电厂经验是燃机或燃机部件改良的直接途径。

西门子燃机特性是通过超前的、便于维护的、耐用的设计,因此允许长的检修间隔并减少维护工作。

“日常维护〞或“运行维护〞包括在燃机和其辅助系统在运行或备用的情况下执行的不对设备的可用性产生负面影响的所有工作。

维护包括维持电厂规定状况的措施。

从本质上说这些热通道部件的磨损是时间和循环过程的函数,时间对磨损的影响包括:

在高金属温度下的机械载荷引起的部材料蠕变损害;

热通道部件的蠕变变形;

随过滤后的空气或燃料带入热通道的细小灰尘颗粒引进的侵蚀;

当使用“清洁〞燃料时在高金属温度时产生氧化;

由于污染的燃料产生的附带的导致材料损失的腐蚀;

由注水引起的金属温度提高、扰动、抗氧化层脱落附带的机械载荷;

促成磨擦磨损的振动。

循环磨损由燃机启动、停机与快速的温度变化或在跳机或甩负荷时的保护措施产生的应力引起。

热通道部件的循环磨损包括:

低周疲劳(LCF),是蠕变疲劳的组合;

相对滑动引起的磨擦磨损。

低周疲劳的影响在循环过程中恶化,因为氧化沉积物产生裂纹并剥落,氧化进程在循环加载的过程中加剧。

因此是这两种影响共同作用的结果。

3.2当量运行小时公式

燃机中承受应力最大的部件是热通道部件,如燃机燃烧室层和燃机叶片。

因此热通道部件需要更多的维护工作,因此将检修,热通道检修和大修之间运行周期基于这些部件累积的磨损是合理的。

这些累积的磨损依照当量运行小时数取得。

按照这里对当量运行小时数的计算适用于所有西门子环形燃烧室设计的燃机。

取决于时间的和取决于周期性磨损因数与公式配合来计算当量运行小时数。

不同种类的磨损被分配有各自的适合温度围的加权因数,以便累积的应力可以换算为根本负荷下的当量运行小时。

时间和周期性组合磨损因数的不同模型用文字来描述。

选择一个易用的模型按照一个基于当量运行小时数的方法来衡量低周疲劳〔LCF〕。

按照运行温度水平的抗蠕变强度允许按照加权因数b1衡量。

燃机首次启机后,需通过测量确定根本负荷水平的燃机出口温度。

通过同时测量的压气机进口温度θCI自动修正出口温度θOT来保证根本负荷输出按照压气机进口温度调整,同时维持大致稳定的燃机进口温度。

当量运行小时数的计算:

tEOH=当量运行小时

n1=开机次数

a1=10(开机因数)

ti=由快速温度变化产生的当量小时数

n=快速温度变化的次数

t1=根本负荷的运行小时

b1=1(根本负荷因数)

f=燃料加权因数

f=1.0对燃料气体和馏出气体,如果符合西门子的规格

f=1.5对馏出气体,如果比照西门子Na+K或者V污染物规格有轻度超标。

w=注入水的加权因数

如果符合西门子规格,流体燃料使用与燃气一样的燃料加权因数,f=1.0。

如果钠和钾总含量超出规定的限度不大于1.0ppm,或者燃料的污染物钒不超过1.5ppm,燃料加权因数使用f=1.5〔符合燃料规格〕。

水〔例如水/燃料混合乳液〕被用来做NOX控制。

在这种情况下热燃气质量流量增加;压比和输出也增加了。

一方面由燃机叶轮保持的机械负荷也变高。

另一方面,热燃气中的水分增加会增加热传递系数,从而使燃机叶片金属温度升高。

更重要的是与含水量增加的热燃气接触会削弱燃机叶片外表涂层的抗磨损能力。

涂层在运行中的保护效果源于其采用抗氧化材料制造,如氧化铝〔Al2O3〕。

水蒸气降低了这些氧化层的稳定性。

通过燃烧过程注入水更显著的增加了进口空气的本来的含水量。

这三个方面的影响,增加的机械负荷,增加的金属温度和氧化层稳定性降低,会加速保护层的磨损。

这些因素同时降低了根底材料的服务寿命。

因此需使用一个加权因数反映水注入量的影响。

燃料加权因数f和水加权因数w的影响由电厂运行小时计数器跟踪表现,并使用这些模型计算然后参加。

水的和污染液体燃料的加权因数w和f不能直接整合进去,因为它们涉与到不同的化学和机械结构。

鉴于这些被污染的燃料一般是专用重油,我们建议这两个因数的加权应与西门子燃机工程部门根据电厂具体情况商议。

对每一次测量到和纪录到的燃气温度明显提高,显示主火焰点燃的开机应表示为Start(n1).自动纪录器〔大修计数表〕在超过点火速度之上的定义切换速度〔约1/3的额定速度〕时,如此纪录一次开机。

启机相应的加权因数是a1=10〔启机因数〕。

运行时间的测量也应基于这一速度切换点。

对于快速温度变化的当量运行小时数,表示为ti,同样采用与快速负荷变化,或者保护性措施甩负荷和跳机时一样的方法累计。

反映快速温度变化的当量运行小时数在大修计数表中表示为动态运行小时数。

快速负荷变化经常发生在小型的,岛状的电网中,当为大电力负荷〔例如电弧炉〕供电或某一大电厂停止供电时。

快速负荷变化造成急剧变化的θOTC(校准的出口温度)温度梯度,导致超出标准的自动控制程序中增加和减少负载时的正常值。

决定性的因数是燃机出口温度的变化,不管其表现如何。

明显的和快速的温度降低或升高增加了燃气轮机部件的最大压力差值。

在10秒钟超过18K的燃机出口温度变化称为温度台阶。

如有“过度燃烧〞的情况,电网编号的要求规定了对额外运行小时的分别计算。

为说明大修计数表计算程序如何计算源于快速温度变化ti,的当量运行小时数,图3描述了运算法如此。

相应的小时数变为θOTC的一个函数。

举例:

一次快速透平出口的温度变化从540℃变化到230℃或从230℃变化到540℃,ΔϑOTC为310℃,因此产生的EOH为:

①当IGV全开时温度变化,EOH为71h;

②当IGV半开时温度变化,EOH为29h;

③当IGV关闭时温度变化,EOH为8h。

如图4,限定了燃机跳机和甩负荷时的透平出口温度变化梯度值ΔϑOTC:

跳机——150℃;甩负荷——IGV全开时200℃、IGV关闭时275℃。

跳机或甩负荷后,一旦相应的限定值达到,ΔϑOTC变化会变得缓慢。

发生上述事件(跳机或甩负荷)时,压气机入口0级可调导叶的位置(VLe0)作为参数参与大修计数表动态运行小时的计算。

更进一步可以从图3和图4中给出的VLe0设定来计算。

跳机和甩负荷引起的温度突变会对某些热部件猛烈的冲击,如果带入全部流量的冷压缩空气,这种冲击尤为显著。

不管是运行人员,还是制造商都应仔细的分析每次跳机或甩负荷的原因,并采取适当的措施以消除引起跳机或甩负荷的根源。

在跳机或甩负荷时,通过全部或局部的关小IGV开度的方法来减小空气的流量,能使透平的冷却速度比IGV全开时减缓,于是透平会受到相对较弱的热冲击。

图4跳机和甩负荷产生的EOH

举例:

透平出口的温度为ϑOTC=540℃时:

①当IGV全开时跳机(温度突降)产生的EOH为138h;

②当IGV全开时甩负荷产生的EOH为90h;

③当IGV关闭时跳机产生的EOH为22h。

3.3维护

运行任何设备和电厂都要支付磨损费用。

失去检查和在检修或大修中做必要的磨损修复工作,燃机不可能可靠运行。

检修以决定机器的状况,并进展必要的纠正工作或修理。

检修的目的是防止非计划停机与因此产生的损坏、减少发电量。

西门子的维护程序并入燃机的设计。

在燃机的设计中已经制定了燃机的特性与检修围与检修工期。

因此,西门子燃机连续性表现在简单、耐用的设计和数十年的寿命。

在一样的围,它们需要很少的维护物资,有利于维护的设计,具有在整个运行周期平稳过度的特性:

容易从人孔进入机器进展检查;

从人孔进入燃机可接近一级和未级透平叶片,可直接检查路叶片的外观;

容易更换燃烧室壁元件(瓷隔热瓦CHS、金属隔热瓦MHS、燃烧器支撑等);

从侧、外侧都能很容易的接近燃烧器;

通过检查孔可轻易检查到所有部件;

中分的缸面结构更容易接近全部零件;

上下分半的静叶持环能在不吊转子的情况下拆卸;

在不分解转子下可更换压气机和透平叶片;

在不吊转子的情况下可拆卸压气机和透平轴承;

转子采用叠盘拉杆设计,用气膜冷却的轮盘可减小热应力和材料周期疲劳;

单独的透平静叶片(相对扇两个或更多的叶片组成的段形)可减小热应力和材料周期疲劳;

热通道中无阻尼元件;

由于启动扭矩大,在正常的启动温度下能快速加速,意味着可以快速通过固有频率。

根据检修围和检修间隔区分有三种检修类型:

小修:

只是作简单的检查,进入燃机部可进入的区域(图5),进展目视检查;装配工作为打开人孔,拆除人孔门。

图5:

环型燃烧室检查

热通道检查(HGPI):

本质上是针对热通道部件的大修。

也就是打开透平外缸,吊出透平静叶持环的上半局部,滑出透平静叶持环的下半局部,拆下透平动、静叶片,进展修复或更换。

习惯上并一打开压气机局部,也不吊出转子。

实际上,有时也进展扩大性的热通道检查。

大修:

将机器彻底分解,做全面的外观检查和无损检测,根据计划和现场实际情况采取修理措施。

分解转子并不一定作为惯例,但是它对检查来说非常必要。

3.4小修

强烈推荐将压气机清洗作为检修的准备工作。

进展检修时打开进气道人孔、燃烧室人孔、排气扩散段人孔。

按检查表进展检查,主要有以下部位。

压气机进口,包括进气结构;

燃烧室,包括隔热瓦和燃烧器;

透平一级和末级叶片;

排气缸衬和排气局部。

通常主要进展如下工作:

外观检查挑选的部件,测量规定的间隔、间隙,检查松动或缺损的零件。

这样可以判断出整个机组的状况。

比照其它厂家生产的燃机,这种检修免去了分解燃烧室和大量耗时的窥镜检查等工作。

设计双缸燃烧室的优势就是在检修期间所有热通道部件(如金属隔热瓦、瓷隔热瓦)与其使用的附属件(螺栓、隔热瓦固定件)都可以直接目视检查。

原如此上说,直接的目视检查比通过窥镜检查更加可靠。

窥镜检查可能在出现意外情况的时候进展辅助测量时有用,比如外物损伤。

直接进入这可以进入的区域,也能达到这个目的。

本燃机也设计了窥镜检查孔。

更换哪个部件,应对检查时发现问题的措施都明确在检查表中,补救措施清册是产品手册的一局部。

通常以规定间隔的进展燃烧室检查并不一定要更换热通道部件(如瓷隔热瓦、金属隔热瓦与其固定件)。

如果在检查时发现有必要更换这些零件,在设计上允许不吊缸更换这些零件。

如前面所述,需检查的部件包括瓷隔热瓦,它不象金属隔热瓦那样具有延展性,即使在初始安装时,也能看到其在设计生产过程中出现的细微裂纹,裂纹延伸只是意味着在燃机运行过程中释放了较高的热应力。

因此,其检查表规定了以外观检查来判断其外表裂纹。

通过相应的补救措施清册和评估模板指示并判断出作为一种预防性措施更换哪一块CHS。

如有缺陷的隔热瓦不是与假隔热瓦(安装时的最后一块),应先拆除它与那排假隔热瓦间的所有隔热瓦。

根据CHS的位置,需要拆除金属的假隔热瓦或最后的瓦片。

燃烧室瓦片的裂纹与每台燃机的运行模式有关,每个电厂的隔热瓦期望更换率有所不同。

一旦检查过程中发现了问题隔热瓦的固定件、燃烧器支撑件、金属隔热瓦与附件也应(由西门子人员)更换。

便于维护的优点意味着这些零件的附件可以很快就更换好。

这些零件期望更换率也是随运行模式变化。

相应更换件的维修包包括运行到大修前需要的零件(安装金属、瓷隔热瓦等),包括检修安装的零件。

这个维修包随检修时的发现表逐一更新。

经过适当的培训,运行人员可根据检查表和补救措施清册逐一完成检修工作。

此时,应通知制造商发现和补救措施,以便维护商以此信息评估制定下一次检修或大修的计划。

3.5热通道检查和大修

如上所述,在燃机的维护计划中,热通道部件是最重要的。

燃机的热通道部件,特别是透平动叶和静叶,是有限寿命设计。

以叶片的蠕变力为根底设计,叶片容许有一定的蠕变损伤。

图6中描述了在运行时抗蠕变力的储藏和修复。

为了防止几排叶片热侵蚀,并充分的利用抗蠕变力储藏,必须一定的保护措施。

这种保护系统有一定厚度的涂层,是一层铝化合物。

这种保护涂层的作用是牺牲涂层以保护零件,涂层的寿命要比零件低得多,因此必须按一定的间隔更新。

这些叶片拆下重新涂层后继续回装使用。

在热通道检查间隔检修时确定保护涂层的剩余量在允许的厚度围。

A小修

B大修或热通道时更新

tDEL期望寿命(设计)

C、E基体材料和保护涂层的预期恶化

图6热通道部件的期望寿命和涂层更新

西门子燃机的透平叶片同其它的热通道部件(金属燃烧室衬)一样,也是采用高强度耐热合金,并花巨资铸造。

由于不可防止的制造公差,这些部件承受不同的负荷,有不同的强度;此外,在制造过程中不连续的结构不能通过试验显示出来;这样在运行过程中可以开展成缺陷,比如裂纹。

这些部件在服役期出现不同的强度和负荷形状。

通过在加工过程中贯彻全面的质保措施(如用X射线评估叶片、每一步工序后的外表裂纹检查),以保证机组运行到热通道检查。

届时,一局部进展必要的检查,同时修理或修复这些零件,保证机组运行到下一次检修。

由于存在前面描述的部件个体差异,必须假定一定数量的叶片不能继续服役,因为很小的、最初不能发现的结构缺陷已经开展。

热通道检查包括小修的围加上一些热通道部件的修复或更换。

这需要拆除燃烧室和透平区域的外缸,并吊出燃烧室上半缸和透平静叶持环(包括滑出相应的下半)。

规定不打开压气机局部,不吊转子。

然而,实际上,也开展成扩大性中修。

增加的围是打开压气机并按检查表检修可以接近的部件

以下观点支持扩大性中修:

在扩大性中修时打开压气机缸清洗压气机叶片,并可以除去叶片上的沉积残渣;这种检修可以恢复损失的功率和效率。

通过统一编制计划协调工作,防止额外停机时间需求。

由用户决定热通道检查的围,至少提前一年开预备会,以便做健全的、从容不迫的决定。

此次会议也应以上次检修结果为根底,保证在制定热通道检修围时考虑到相应的检查发现。

大修的围包括热通道检查的项目,增加打开压气机局部并对其叶片进展无损检查。

此时视涂层的状况,重新对压气机叶片进展喷涂;通常要将压气上半缸拆除。

分解转子以接近检查不到的部件并不一定作为惯例,但是它对检查来说非常必要。

3.6关键件的更换和翻新周期

根据维护计划中确定的更换和修理围,得出更换件的预算计划。

注意参照在电运行中工程师评估的大致围。

在头脑中会形成这样的一个运行与维护之间的长期的公式,并基于以下假设:

连续以基荷运行;

燃料和空气符合西门子要求;

按厂家说明书运行;

按厂家的指导方针和说明书日常维修、检修、大修机组。

这只能作为长期的备件和维修计划的指导方针。

针对特定的电厂,从小修和大修中获取的

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 求职职场 > 简历

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2