元器件检测.docx

上传人:b****1 文档编号:10999180 上传时间:2023-05-28 格式:DOCX 页数:23 大小:36.34KB
下载 相关 举报
元器件检测.docx_第1页
第1页 / 共23页
元器件检测.docx_第2页
第2页 / 共23页
元器件检测.docx_第3页
第3页 / 共23页
元器件检测.docx_第4页
第4页 / 共23页
元器件检测.docx_第5页
第5页 / 共23页
元器件检测.docx_第6页
第6页 / 共23页
元器件检测.docx_第7页
第7页 / 共23页
元器件检测.docx_第8页
第8页 / 共23页
元器件检测.docx_第9页
第9页 / 共23页
元器件检测.docx_第10页
第10页 / 共23页
元器件检测.docx_第11页
第11页 / 共23页
元器件检测.docx_第12页
第12页 / 共23页
元器件检测.docx_第13页
第13页 / 共23页
元器件检测.docx_第14页
第14页 / 共23页
元器件检测.docx_第15页
第15页 / 共23页
元器件检测.docx_第16页
第16页 / 共23页
元器件检测.docx_第17页
第17页 / 共23页
元器件检测.docx_第18页
第18页 / 共23页
元器件检测.docx_第19页
第19页 / 共23页
元器件检测.docx_第20页
第20页 / 共23页
亲,该文档总共23页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

元器件检测.docx

《元器件检测.docx》由会员分享,可在线阅读,更多相关《元器件检测.docx(23页珍藏版)》请在冰点文库上搜索。

元器件检测.docx

元器件检测

 

元器件检测

元器件的检测是家电维修的一项基本功,如何准确有效地检测元器件的相关参数,判断元器件的是否正常,不是一件千篇一律的事,必须根据不同的元器件采用不同的方法,从而判断元器件的正常与否。

特别对初学者来说,熟练掌握常用元器件的检测方法和经验很有必要,以下对常用电子元器件的检测经验和方法进行介绍供对考。

  

一、电阻器的检测方法与经验:

1、固定电阻器的检测。

A将两表笔(不分正负)分别与电阻的两端引脚相接即可测出实际电阻值。

为了提高测量精度,应根据被测电阻标称值的大小来选择量程。

由于欧姆挡刻度的非线性关系,它的中间一段分度较为精细,因此应使指针指示值尽可能落到刻度的中段位置,即全刻度起始的20%~80%弧度范围内,以使测量更准确。

根据电阻误差等级不同。

读数与标称阻值之间分别允许有±5%、±10%或±20%的误差。

如不相符,超出误差范围,则说明该电阻值变值了。

B注意:

测试时,特别是在测几十kΩ以上阻值的电阻时,手不要触及表笔和电阻的导电部分;被检测的电阻从电路中焊下来,至少要焊开一个头,以免电路中的其他元件对测试产生影响,造成测量误差;色环电阻的阻值虽然能以色环标志来确定,但在使用时最好还是用万用表测试一下其实际阻值。

 2、水泥电阻的检测。

检测水泥电阻的方法及注意事项与检测普通固定电阻完全相同。

 3、熔断电阻器的检测。

在电路中,当熔断电阻器熔断开路后,可根据经验作出判断:

若发现熔断电阻器表面发黑或烧焦,可断定是其负荷过重,通过它的电流超过额定值很多倍所致;如果其表面无任何痕迹而开路,则表明流过的电流刚好等于或稍大于其额定熔断值。

对于表面无任何痕迹的熔断电阻器好坏的判断,可借助万用表R×1挡来测量,为保证测量准确,应将熔断电阻器一端从电路上焊下。

若测得的阻值为无穷大,则说明此熔断电阻器已失效开路,若测得的阻值与标称值相差甚远,表明电阻变值,也不宜再使用。

在维修实践中发现,也有少数熔断电阻器在电路中被击穿短路的现象,检测时也应予以注意。

 4、电位器的检测。

检查电位器时,首先要转动旋柄,看看旋柄转动是否平滑,开关是否灵活,开关通、断时“喀哒”声是否清脆,并听一听电位器内部接触点和电阻体摩擦的声音,如有“沙沙”声,说明质量不好。

用万用表测试时,先根据被测电位器阻值的大小,选择好万用表的合适电阻挡位,然后可按下述方法进行检测。

A用万用表的欧姆挡测“1”、“2”两端,其读数应为电位器的标称阻值,如万用表的指针不动或阻值相差很多,则表明该电位器已损坏。

B检测电位器的活动臂与电阻片的接触是否良好。

用万用表的欧姆档测“1”、“2”(或“2”、“3”)两端,将电位器的转轴按逆时针方向旋至接近“关”的位置,这时电阻值越小越好。

再顺时针慢慢旋转轴柄,电阻值应逐渐增大,表头中的指针应平稳移动。

当轴柄旋至极端位置“3”时,阻值应接近电位器的标称值。

如万用表的指针在电位器的轴柄转动过程中有跳动现象,说明活动触点有接触不良的故障。

 5、正温度系数热敏电阻(PTC)的检测。

检测时,用万用表R×1挡,具体可分两步操作:

A常温检测(室内温度接近25℃);将两表笔接触PTC热敏电阻的两引脚测出其实际阻值,并与标称阻值相对比,二者相差在±2Ω内即为正常。

实际阻值若与标称阻值相差过大,则说明其性能不良或已损坏。

B加温检测;在常温测试正常的基础上,即可进行第二步测试—加温检测,将一热源(例如电烙铁)靠近PTC热敏电阻对其加热,同时用万用表监测其电阻值是否随温度的升高而增大,如是,说明热敏电阻正常,若阻值无变化,说明其性能变劣,不能继续使用。

注意不要使热源与PTC热敏电阻靠得过近或直接接触热敏电阻,以防止将其烫坏。

 6、负温度系数热敏电阻(NTC)的检测。

(1)、测量标称电阻值Rt用万用表测量NTC热敏电阻的方法与测量普通固定电阻的方法相同,即根据NTC热敏电阻的标称阻值选择合适的电阻挡可直接测出Rt的实际值。

但因NTC热敏电阻对温度很敏感,故测试时应注意以下几点:

ARt是生产厂家在环境温度为25℃时所测得的,所以用万用表测量Rt时,亦应在环境温度接近25℃时进行,以保证测试的可信度。

B测量功率不得超过规定值,以免电流热效应引起测量误差。

C注意正确操作。

测试时,不要用手捏住热敏电阻体,以防止人体温度对测试产生影响。

(2)、估测温度系数αt先在室温t1下测得电阻值Rt1,再用电烙铁作热源,靠近热敏电阻Rt,测出电阻值RT2,同时用温度计测出此时热敏电阻RT表面的平均温度t2再进行计算。

 7、压敏电阻的检测。

用万用表的R×1k挡测量压敏电阻两引脚之间的正、反向绝缘电阻,均为无穷大,否则,说明漏电流大。

若所测电阻很小,说明压敏电阻已损坏,不能使用。

  

8、光敏电阻的检测。

A用一黑纸片将光敏电阻的透光窗口遮住,此时万用表的指针基本保持不动,阻值接近无穷大。

此值越大说明光敏电阻性能越好。

若此值很小或接近为零,说明光敏电阻已烧穿损坏,不能再继续使用。

B将一光源对准光敏电阻的透光窗口,此时万用表的指针应有较大幅度的摆动,阻值明显减小。

此值越小说明光敏电阻性能越好。

若此值很大甚至无穷大,表明光敏电阻内部开路损坏,也不能再继续使用。

C将光敏电阻透光窗口对准入射光线,用小黑纸片在光敏电阻的遮光窗上部晃动,使其间断受光,此时万用表指针应随黑纸片的晃动而左右摆动。

如果万用表指针始终停在某一位置不随纸片晃动而摆动,说明光敏电阻的光敏材料已经损坏。

 二、电容器的检测方法与经验

1、固定电容器的检测。

A检测10pF以下的小电容因10pF以下的固定电容器容量太小,用万用表进行测量,只能定性的检查其是否有漏电,内部短路或击穿现象。

测量时,可选用万用表R×10k挡,用两表笔分别任意接电容的两个引脚,阻值应为无穷大。

若测出阻值(指针向右摆动)为零,则说明电容漏电损坏或内部击穿。

B检测10PF~001μF固定电容器是否有充电现象,进而判断其好坏。

万用表选用R×1k挡。

两只三极管的β值均为100以上,且穿透电流要小。

可选用3DG6等型号硅三极管组成复合管。

万用表的红和黑表笔分别与复合管的发射极e和集电极c相接。

由于复合三极管的放大作用,把被测电容的充放电过程予以放大,使万用表指针摆幅度加大,从而便于观察。

应注意的是:

在测试操作时,特别是在测较小容量的电容时,要反复调换被测电容引脚接触A、B两点,才能明显地看到万用表指针的摆动。

C对于001μF以上的固定电容,可用万用表的R×10k挡直接测试电容器有无充电过程以及有无内部短路或漏电,并可根据指针向右摆动的幅度大小估计出电容器的容量。

  

2、电解电容器的检测。

A因为电解电容的容量较一般固定电容大得多,所以,测量时,应针对不同容量选用合适的量程。

根据经验,一般情况下,1~47μF间的电容,可用R×1k挡测量,大于47μF的电容可用R×100挡测量。

B将万用表红表笔接负极,黑表笔接正极,在刚接触的瞬间,万用表指针即向右偏转较大偏度(对于同一电阻挡,容量越大,摆幅越大),接着逐渐向左回转,直到停在某一位置。

此时的阻值便是电解电容的正向漏电阻,此值略大于反向漏电阻。

实际使用经验表明,电解电容的漏电阻一般应在几百kΩ以上,否则,将不能正常工作。

在测试中,若正向、反向均无充电的现象,即表针不动,则说明容量消失或内部断路;如果所测阻值很小或为零,说明电容漏电大或已击穿损坏,不能再使用。

C对于正、负极标志不明的电解电容器,可利用上述测量漏电阻的方法加以判别。

即先任意测一下漏电阻,记住其大小,然后交换表笔再测出一个阻值。

两次测量中阻值大的那一次便是正向接法,即黑表笔接的是正极,红表笔接的是负极。

D使用万用表电阻挡,采用给电解电容进行正、反向充电的方法,根据指针向右摆动幅度的大小,可估测出电解电容的容量。

  

3、可变电容器的检测A用手轻轻旋动转轴,应感觉十分平滑,不应感觉有时松时紧甚至有卡滞现象。

将载轴向前、后、上、下、左、右等各个方向推动时,转轴不应有松动的现象。

B用一只手旋动转轴,另一只手轻摸动片组的外缘,不应感觉有任何松脱现象。

转轴与动片之间接触不良的可变电容器,是不能再继续使用的。

C将万用表置于R×10k挡,一只手将两个表笔分别接可变电容器的动片和定片的引出端,另一只手将转轴缓缓旋动几个来回,万用表指针都应在无穷大位置不动。

在旋动转轴的过程中,如果指针有时指向零,说明动片和定片之间存在短路点;如果碰到某一角度,万用表读数不为无穷大而是出现一定阻值,说明可变电容器动片与定片之间存在漏电现象。

三、电感器、变压器检测方法与经验。

1、色码电感器的的检测将万用表置于R×1挡,红、黑表笔各接色码电感器的任一引出端,此时指针应向右摆动。

根据测出的电阻值大小,可具体分下述三种情况进行鉴别:

A被测色码电感器电阻值为零,其内部有短路性故障。

B被测色码电感器直流电阻值的大小与绕制电感器线圈所用的漆包线径、绕制圈数有直接关系,只要能测出电阻值,则可认为被测色码电感器是正常的。

2、中周变压器的检测A将万用表拨至R×1挡,按照中周变压器的各绕组引脚排列规律,逐一检查各绕组的通断情况,进而判断其是否正常。

B检测绝缘性能将万用表置于R×10k挡,做如下几种状态测试:

(1)初级绕组与次级绕组之间的电阻值;

(2)初级绕组与外壳之间的电阻值;(3)次级绕组与外壳之间的电阻值。

上述测试结果分出现三种情况:

(1)阻值为无穷大:

正常;

(2)阻值为零:

有短路性故障;(3)阻值小于无穷大,但大于零:

有漏电性故障。

3、电源变压器的检测A通过观察变压器的外貌来检查其是否有明显异常现象。

如线圈引线是否断裂,脱焊,绝缘材料是否有烧焦痕迹,铁心紧固螺杆是否有松动,硅钢片有无锈蚀,绕组线圈是否有外露等。

B绝缘性测试。

用万用表R×10k挡分别测量铁心与初级,初级与各次级、铁心与各次级、静电屏蔽层与衩次级、次级各绕组间的电阻值,万用表指针均应指在无穷大位置不动。

否则,说明变压器绝缘性能不良。

C线圈通断的检测。

将万用表置于R×1挡,测试中,若某个绕组的电阻值为无穷大,则说明此绕组有断路性故障。

D判别初、次级线圈。

电源变压器初级引脚和次级引脚一般都是分别从两侧引出的,并且初级绕组多标有220V字样,次级绕组则标出额定电压值,如15V、24V、35V等。

再根据这些标记进行识别。

E空载电流的检测。

(a)直接测量法。

将次级所有绕组全部开路,把万用表置于交流电流挡(500mA,串入初级绕组。

当初级绕组的插头插入220V交流市电时,万用表所指示的便是空载电流值。

此值不应大于变压器满载电流的10%~20%。

一般常见电子设备电源变压器的正常空载电流应在100mA左右。

如果超出太多,则说明变压器有短路性故障。

(b)间接测量法。

在变压器的初级绕组中串联一个10/5W的电阻,次级仍全部空载。

把万用表拨至交流电压挡。

加电后,用两表笔测出电阻R两端的电压降U,然后用欧姆定律算出空载电流I空,即I空=U/R。

F空载电压的检测。

将电源变压器的初级接220V市电,用万用表交流电压接依次测出各绕组的空载电压值(U21、U22、U23、U24)应符合要求值,允许误差范围一般为:

高压绕组≤±10%,低压绕组≤±5%,带中心抽头的两组对称绕组的电压差应≤±2%。

G一般小功率电源变压器允许温升为40℃~50℃,如果所用绝缘材料质量较好,允许温升还可提高。

H检测判别各绕组的同名端。

在使用电源变压器时,有时为了得到所需的次级电压,可将两个或多个次级绕组串联起来使用。

采用串联法使用电源变压器时,参加串联的各绕组的同名端必须正确连接,不能搞错。

否则,变压器不能正常工作。

I.电源变压器短路性故障的综合检测判别。

电源变压器发生短路性故障后的主要症状是发热严重和次级绕组输出电压失常。

通常,线圈内部匝间短路点越多,短路电流就越大,而变压器发热就越严重。

检测判断电源变压器是否有短路性故障的简单方法是测量空载电流(测试方法前面已经介绍)。

存在短路故障的变压器,其空载电流值将远大于满载电流的10%。

当短路严重时,变压器在空载加电后几十秒钟之内便会迅速发热,用手触摸铁心会有烫手的感觉。

此时不用测量空载电流便可断定变压器有短路点存在。

(上完 )

PCB之经验谈

布局:

总体思想:

在符合产品电气以及机械结构要求的基础上考虑整体美观,在一个PCB板上,元件的布局要求要均衡,疏密有序。

1.印制板尺寸必须与加工图纸尺寸相符,符合PCB制造工艺要求,放置MARK点。

2.元件在二维、三维空间上有无冲突?

3.元件布局是否疏密有序,排列整齐?

是否全部布完?

4.需经常更换的元件能否方便的更换?

插件板插入设备是否方便?

5.热敏元件与发热元件之间是否有适当的距离?

6.调整可调元件是否方便?

7.在需要散热的地方,装了散热器没有?

空气流是否通畅?

8.信号流程是否顺畅且互连最短?

9.插头、插座等与机械设计是否矛盾?

10.蜂鸣器远离柱形电感,避免干扰声音失真。

11.速度较快的器件如SRAM要尽量的离CPU近。

12.由相同电源供电的器件尽量放在一起。

布线:

  

1.走线要有合理的走向:

如输入/输出,交流/直流,强/弱信号,高频/低频,高压/低压等...,它们的走向应该是呈线形的(或分离),不得相互交融。

其目的是防止相互干扰。

最好的走向是按直线,但一般不易实现,避免环形走线。

对于是直流,小信号,低电压PCB设计的要求可以低些。

输入端与输出端的边线应避免相邻平行,以免产生反射干扰。

必要时应加地线隔离,两相邻层的布线要互相垂直,平行容易产生寄生耦合。

2.选择好接地点:

一般情况下要求共点地,数字地与模拟地在电源输入电容处相连。

3.合理布置电源滤波/退耦电容:

布置这些电容就应尽量靠近这些元部件,离得太远就没有作用了。

在贴片器件的退耦电容最好在布在板子另一面的器件肚子位置,电源和地要先过电容,再进芯片。

4.线条有讲究:

有条件做宽的线决不做细;高压及高频线应园滑,不得有尖锐的倒角,拐弯也不得采用直角,一般采用135度角。

地线应尽量宽,最好使用大面积敷铜,这对接地点问题有相当大的改善。

设计中应尽量减少过线孔,减少并行的线条密度。

5.尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:

地线>电源线>信号线。

6.数字电路与模拟电路的共地处理,现在有许多PCB不再是单一功能电路(数字或模拟电路),而是由数字电路和模拟电路混合构成的。

因此在布线时就需要考虑它们之间互相干扰问题,特别是地线上的噪音干扰。

数字电路的频率高,模拟电路的敏感度强,对信号线来说,高频的信号线尽可能远离敏感的模拟电路器件,对地线来说,整人PCB对外界只有一个结点,所以必须在PCB内部进行处理数、模共地的问题,而在板内部数字地和模拟地实际上是分开的它们之间互不相连,只是在PCB与外界连接的接口处(如插头等)。

数字地与模拟地有一点短接。

7.信号线布在电(地)层上

在多层印制板布线时,由于在信号线层没有布完的线剩下已经不多,再多加层数就会造成浪费也会给生产增加一定的工作量,成本也相应增加了,为解决这个矛盾,可以考虑在电(地)层上进行布线。

首先应考虑用电源层,其次才是地层。

因为最好是保留地层的完整性。

8.关键信号的处理,关键信号如时钟线应该进行包地处理,避免产生干扰,同时在晶振器件边做一个焊点使晶振外壳接地。

9.设计规则检查(DRC)

  布线设计完成后,需认真检查布线设计是否符合设计者所制定的规则,同时也需确认所制定的规则是否符合印制板生产工艺的需求,一般检查有如下几个方面:

线与线,线与元件焊盘,线与贯通孔,元件焊盘与贯通孔,贯通孔与贯通孔之间的距离是否合理,是否满足生产要求。

  电源线和地线的宽度是否合适,电源与地线之间是否紧耦合(低的波阻抗)?

在PCB中是否还有能让地线加宽的地方。

  对于关键的信号线是否采取了最佳措施,如长度最短,加保护线,输入线及输出线被明显地分开。

  模拟电路和数字电路部分,是否有各自独立的地线。

  后加在PCB中的图形(如图标、注标)是否会造成信号短路。

  对一些不理想的线形进行修改。

在PCB上是否加有工艺线?

阻焊是否符合生产工艺的要求,阻焊尺寸是否合适,字符标志是否压在器件焊盘上,以免影响电装质量。

  多层板中的电源地层的外框边缘是否缩小,如电源地层的铜箔露出板外容易造成短路。

10.关于EMC方面:

a.尽可能选用信号斜率较慢的器件,以降低信号所产生的高频成分。

b.注意高频器件摆放的位置,不要太靠近对外的连接器。

c.注意高速信号的阻抗匹配,走线层及其回流电流路径,以减少高频的反射与辐射。

d.在各器件的电源管脚放置足够与适当的去耦合电容以缓和电源层和地层上的噪声。

特别注意电容的频率响应与温度的特性是否符合设计所需。

e电源层比地层内缩20H,H为电源层与地层之间的距离。

11.GERBER输出检查

检查输出的GERBER文件是否按层叠顺序要求输出,在CAM350里查看每一层数据以及DRILL表,同时注意特殊孔如方孔的输出

印制电路板(PCB)是电子产品中电路元件和器件的支撑件.它提供电路元件和器件

之间的电气连接。

随着电于技术的飞速发展,PGB的密度越来越高。

PCB设计的好坏对抗

干扰能力影响很大.因此,在进行PCB设计时.必须遵守PCB设计的一般原则,并应符合

抗干扰设计的要求。

要使电子电路获得最佳性能,元器件的布且及导线的布设是很重要

的。

为了设计质量好、造价低的PCB.应遵循以下一般原则:

布局

  首先,要考虑PCB尺寸大小。

PCB尺寸过大时,印制线条长,阻抗增加,抗噪声能力

下降,成本也增加;过小,则散热不好,且邻近线条易受干扰。

在确定PCB尺寸后.再确

定特殊元件的位置。

最后,根据电路的功能单元,对电路的全部元器件进行布局。

尽可能缩短高频元器件之间的连线,设法减少它们的分布参数和相互间的电磁干扰

易受干扰的元器件不能相互挨得太近,输入和输出元件应尽量远离。

某些元器件或导线之间可能有较高的电位差,应加大它们之间的距离,以免放电引

出意外短路。

带高电压的元器件应尽量布置在调试时手不易触及的地方。

重量超过15g的元器件、应当用支架加以固定,然后焊接。

那些又大又重、发热量多

的元器件,不宜装在印制板上,而应装在整机的机箱底板上,且应考虑散热问题。

热敏

元件应远离发热元件。

对于电位器、可调电感线圈、可变电容器、微动开关等可调元件的布局应考虑整机

的结构要求。

若是机内调节,应放在印制板上方便于调节的地方;若是机外调节,其位

置要与调节旋钮在机箱面板上的位置相适应。

应留出印制板定位孔及固定支架所占用的位置。

根据电路的功能单元.对电路的全

部元器件进行布局时,要符合以下原则:

按照电路的流程安排各个功能电路单元的位置,使布局便于信号流通,并使信号尽可能

保持一致的方向。

以每个功能电路的核心元件为中心,围绕它来进行布局。

元器件应均匀、整齐、紧凑地

排列在PCB上.尽量减少和缩短各元器件之间的引线和连接。

在高频下工作的电路,要考虑元器件之间的分布参数。

一般电路应尽可能使元器

件平行排列。

这样,不但美观.而且装焊容易.易于批量生产。

位于电路板边缘的元器件,离电路板边缘一般不小于2mm。

电路板的最佳形状为

矩形。

长宽比为3:

2成4:

3。

电路板面尺寸大于200x150mm时.应考虑电路板所受的机械

强度。

布线

  布线的原则如下:

输入输出端用的导线应尽量避免相邻平行。

最好加线间地线,以免发生反馈藕合。

印制摄导线的最小宽度主要由导线与绝缘基扳间的粘附强度和流过它们的电流值决定。

当铜箔厚度为0.05mm、宽度为1~15mm时.通过2A的电流,温度不会高于3℃,因此

.导线宽度为1.5mm可满足要求。

对于集成电路,尤其是数字电路,通常选0.02~0.3mm导

线宽度。

当然,只要允许,还是尽可能用宽线.尤其是电源线和地线。

导线的最小间距

主要由最坏情况下的线间绝缘电阻和击穿电压决定。

对于集成电路,尤其

是数字电路,只要工艺允许,可使间距小至5~8mm。

印制导线拐弯处一般取圆弧形,而直角或夹角在高频电路中会影响电气性能。

此外,尽

量避免使用大面积铜箔,否则.长时间受热时,易发生胀和脱落现?

必须用大

面积铜箔时,最好用栅格状.这样有利于排除铜箔与基板间粘合剂受热产生的挥发性气

体。

PCB设计的电磁兼容设计

印刷线路板的布线要注意以下问题:

专用零伏线,电源线的走线宽度≥1mm;电源线和地

线尽可能靠近,整块印刷板上的电源与地要呈“井”字形分布,以便使分布线电流达到

均衡;要为模拟电路专门提供一根零伏线;为减少线间串扰,必要时可增加印刷线条间

距离,在意;安插一些零伏线作为线间隔离;印刷电路的插头也要多安排一些零伏线作

为线间隔离;特别注意电流流通中的导线环路尺寸;如有可能在控制线(于印刷板上)

的入口处加接R-C去耦,以便消除传输中可能出现的干扰因素;印刷弧上的线宽不要突变

导线不要突然拐角(≥90度)。

焊盘

 『概讨行目要比器件引线直径?

大一些。

焊盘太大易形成虚焊。

?

盘外径D一般不小于

(d+1.2)mm,其中d为引线孔径。

对高密度的数字电路,焊盘最小直径可取(d+1.0)mm。

PCB及电路抗干扰措施

  印制电路板的抗干扰设计与具体电路有着密切的关系,这里仅就PCB抗干扰设计的几

项常用措施做一些说明。

电源线设计

  根据印制线路板电流的大小,尽量加租电源线宽度,减少环路电阻。

同时、使电源

线、地线的走向和数据传递的方向一致,这样有助于增强抗噪声能力。

地线设计

 地线设计的原则是:

数字地与模拟地分开。

若线路板上既有逻辑电路又有线性电路,应使它们尽量分开。

频电路的地应尽量采用单点并联接地,实际布线有困难时可部分串联后再并联接地。

频电路宜采用多点串联接地,地线应短而租,高频元件周围尽量用栅格状大面积地箔。

接地线应尽量加粗。

若接地线用很细的线条,则接地电位随电流的变化而变化,使抗噪

性能降低。

因此应将接地线加粗,使它能通过三倍于印制板上的允许电流。

如有可能,

接地线应在2~3mm以上。

接地线构成闭环路。

只由数字电路组成的印制板,其接地电路布成团环路大多能提高抗

噪声能力。

退藕电容配置

PCB设计的常规做法之一是在印制板的各个关键部位配置适当的退藕电容。

退藕电容的一般配置原则是:

电源输入端跨接10~100uf的电解电容器。

如有可能,接100uF以上的更好。

原则上每个集成电路芯片都应布置一个0.01pF的瓷片电容,如遇印制板空隙不够,可每

4~8个芯片布置一个1~10pF的但电容。

对于抗噪能力弱、关断时电源变化大的器件,如RAM、ROM存储器件,应在芯片的电源线

和地线之间直接入退藕电容。

电容引线不能太长,尤其是高频旁路电容不能有引线。

此外,还应注意以下两点:

在印制板中有接触器、继电器、按钮等元件时.操作它们时均会产生较大火花放电,必

须采用附图所示的RC电路来吸收放电电流。

一般R取1~2K,C取2.2~47UF。

CMOS的输入阻抗很高,且易受感应,因此在使用时对不用端要接地或接正电源。

使用逻辑电路有益建议:

凡能不用高速逻辑电路的就不用;在电源与地之间加去耦电容

;注意长线传输中的波形畸变;用R-S触发的作按钮与电子线路之间配合的缓冲。

2.2PCB的电磁兼容性设计

印制电路板(PCB)是电子产品中电路元件和器件的支撑件.它提供电路元件和器件

之间的电气连接。

随着电于技术的飞速发展,PGB的密度越来越高。

PCB设计的好坏对抗

干扰能力影响很大.因此,在进行PCB设计时.必

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 自然科学 > 物理

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2