华北电力汽轮机习题解读.docx

上传人:b****3 文档编号:11119804 上传时间:2023-05-29 格式:DOCX 页数:28 大小:130.17KB
下载 相关 举报
华北电力汽轮机习题解读.docx_第1页
第1页 / 共28页
华北电力汽轮机习题解读.docx_第2页
第2页 / 共28页
华北电力汽轮机习题解读.docx_第3页
第3页 / 共28页
华北电力汽轮机习题解读.docx_第4页
第4页 / 共28页
华北电力汽轮机习题解读.docx_第5页
第5页 / 共28页
华北电力汽轮机习题解读.docx_第6页
第6页 / 共28页
华北电力汽轮机习题解读.docx_第7页
第7页 / 共28页
华北电力汽轮机习题解读.docx_第8页
第8页 / 共28页
华北电力汽轮机习题解读.docx_第9页
第9页 / 共28页
华北电力汽轮机习题解读.docx_第10页
第10页 / 共28页
华北电力汽轮机习题解读.docx_第11页
第11页 / 共28页
华北电力汽轮机习题解读.docx_第12页
第12页 / 共28页
华北电力汽轮机习题解读.docx_第13页
第13页 / 共28页
华北电力汽轮机习题解读.docx_第14页
第14页 / 共28页
华北电力汽轮机习题解读.docx_第15页
第15页 / 共28页
华北电力汽轮机习题解读.docx_第16页
第16页 / 共28页
华北电力汽轮机习题解读.docx_第17页
第17页 / 共28页
华北电力汽轮机习题解读.docx_第18页
第18页 / 共28页
华北电力汽轮机习题解读.docx_第19页
第19页 / 共28页
华北电力汽轮机习题解读.docx_第20页
第20页 / 共28页
亲,该文档总共28页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

华北电力汽轮机习题解读.docx

《华北电力汽轮机习题解读.docx》由会员分享,可在线阅读,更多相关《华北电力汽轮机习题解读.docx(28页珍藏版)》请在冰点文库上搜索。

华北电力汽轮机习题解读.docx

华北电力汽轮机习题解读

概念

1.速度比和最佳速比:

将(级动叶的)圆周速度u与喷嘴出口(蒸汽的)速度c1的比值定义为速度比,轮周效率最大时的速度比称为最佳速度比。

2.假想速比:

圆周速度u与假想全级滞止理想比焓降都在喷嘴中等比熵膨胀的假想出口速度的比值。

3.汽轮机的级:

汽轮机的级是汽轮机中由一列静叶栅和一列动叶栅组成的将蒸汽热能转换成机械能的基本工作单元。

4.轮周功率:

单位时间内蒸汽推动叶轮旋转所作出的机械功。

5.级的轮周效率:

1kg蒸汽在轮周上所作的轮周功与整个级所消耗的蒸汽理想能量之比。

6.滞止参数:

具有一定流动速度的蒸汽,如果假想蒸汽等熵地滞止到速度为零时的状态,该状态为滞止状态,其对应的参数称为滞止参数。

7.临界压比:

汽流达到音速时的压力与滞止压力之比。

8.级的相对内效率:

级的相对内效率是指级的有效焓降和级的理想能量之比。

9.喷嘴的极限膨胀压力:

随着背压降低,参加膨胀的斜切部分扩大,斜切部分达到极限膨胀时喷嘴出口所对应的压力

10.级的反动度:

动叶的理想比焓降与级的理想比焓降的比值。

表示蒸汽在动叶通道内膨胀程度大小的指标。

11.余速损失:

汽流离开动叶通道时具有一定的速度,且这个速度对应的动能在该级内不能转换为机械功,这种损失为余速损失。

12.临界流量:

喷嘴通过的最大流量。

13.漏气损失:

汽轮机在工作中由于漏气而产生的损失。

14.部分进汽损失:

由于部分进汽而带来的能量损失。

15.湿气损失:

饱和蒸汽汽轮机的各级和普通凝汽式汽轮机的最后几级都工作与湿蒸汽区,从而对干蒸汽的工作造成一种能量损失称为湿气损失。

16.盖度:

指动叶进口高度超过喷嘴出口高度的那部分叶高。

17.级的部分进汽度:

装有喷嘴的弧段长度与整个圆周长度的比值。

18.汽轮发电机组的循环热效率:

每千克蒸汽在汽轮机中的理想焓降与每千克蒸汽在锅炉中所吸收的热量之比称为汽轮发电机组的循环热效率。

19.热耗率:

每生产1kW.h电能所消耗的热量。

20.发电机组的汽耗率:

汽轮发电机组每发1KW·h电所需要的蒸汽量。

21.汽轮机的极限功率:

在一定的初终参数和转速下,单排气口凝汽式汽轮机所能发出的最大功率。

22.汽轮机的相对内效率:

蒸汽实际比焓降与理想比焓降之比。

23.汽轮机的绝对内效率:

蒸汽实际比焓降与整个热力循环中加给1千克蒸汽的热量之比。

24.汽轮发电机组的相对电效率:

1千克蒸汽所具有的理想比焓降中最终被转化成电能的效率称为汽轮发电机组的相对电效率。

25.汽轮发电机组的绝对电效率:

1千克蒸汽理想比焓降中转换成电能的部分与整个热力循环中加给1千克蒸汽的热量之比称为绝对电效率。

26.轴封系统:

端轴封和与它相连的管道与附属设备。

27.叶轮反动度:

各版和轮盘间汽室压力与级后蒸汽压力之差和级前蒸汽压力与级后压力之差的比值。

28.进汽机构的阻力(节流)损失:

由于蒸汽在汽轮机进汽机构中节流,从而造成蒸汽在汽轮机中的理想焓降减小,称为进汽机构的阻力(节流)损失。

29.多级汽轮机的重热现象:

在多级汽轮机中,前面各级所损失的能量可以部分在以后各级中被利用的现象。

30.重热系数:

因重热现象而增加的理想焓降占汽轮机理想焓降的百分比,称为多级汽轮机的重热系数。

31.凝汽器的极限真空:

凝汽器真空达到末级动叶膨胀极限压力下的真空时,该真空称为凝汽器的极限真空。

32.滑压运行:

调节汽门全开或开度不变,根据负荷大小调节进入锅炉的燃料量,给水量和空气量,使锅炉出口蒸汽压力和流量随负荷而变化,维持出口蒸汽温度不变的运行方式。

(分为纯滑压方式,节流滑压方式,复合滑压方式)

33.汽耗微增率:

每增加单位功率需多增加的汽耗量。

34.空载汽耗:

汽轮发电机组保持空转时为克服机械损失所消耗的蒸汽量。

35.汽轮机的工况图:

汽轮机发电机组的功率与汽耗量间的关系曲线。

36.级的临界工况:

级内的喷嘴叶栅和动叶栅两者之一的流速达到或超过临界速度。

37.级的亚临界工况:

级内喷嘴和动叶出口气流速度均小于临界速度。

38.级组:

流量相等而依次串联排列的若干级称为一个级组。

39.级组的临界工况:

级组内至少有一列叶栅的出口流速达到或超过临界速度。

40.汽轮机的变工况:

汽轮机在偏离设计参数的条件下运行,称为汽轮机的变工况。

41.阀点:

阀门全开的状态点,汽流节流损失最小,流动效率最高的工况点。

42.抽气效应:

喷嘴中流出的高速气流在叶根处对隔板与叶轮间腔室内的蒸汽产生抽吸作用,其效应相当于增大腔室中的压力。

43.泵浦效应:

高速旋转的叶轮带动周围蒸汽旋转运动,离心力使部分蒸汽产生指向叶根的径向运动,叶轮和叶根间隙两侧增加一压差,其效应相当于增大腔室中压力。

44.节流配汽:

进入汽轮机的所有蒸汽都通过一个调节汽门,然后进入汽轮机的配汽方式。

节流配汽特点:

1)负荷小于额定值时,所有蒸汽节流。

2)同样复合下,背压越高,节流效率越低。

45.小容积流量工况:

级的容积流量的相对值小于(30~35)%时的工况。

小容积流量工况危害:

大功率汽轮机的最后几级,特别是末级,在小流量下运行时,出现叶片振动应力升高,转子和静子被加热,动叶出口边受到水珠冲蚀,级的有效功率为负值等现象,影响汽轮机的安全性和经济型。

46.抽汽器型式:

射汽抽汽器、射水抽汽器和水环式真空泵

47.评价凝汽器优劣的指标有真空,凝结水过冷度,凝结水含氧量,水阻,空冷区排出的汽气混合物的过冷度。

48.凝汽器的冷却(循环)倍率:

进入凝汽器的冷却水量与进入凝汽器的蒸汽量的比值称为凝汽器的冷却倍率。

49.凝汽器的过冷度:

凝结水的温度比凝汽器喉部压力下的饱和温度低的数值,称为凝汽器的过冷度。

50.汽阻:

凝汽器入口压力与空气抽出口的压力的差值。

51.水阻:

凝汽器冷却水入口压力与冷却水出口压力差值。

52.多压凝汽器:

有两个以上排气口的大容量机组的凝汽器可制成多压凝汽器,汽侧有密封的分隔板隔开。

53.凝汽器真空:

当地大气压与凝汽器内绝对压力的差值。

54.最佳真空:

在其它条件不变的情况下,如增加冷却水量,则凝汽器的真空就会提高,汽轮发电机组输出的功率就会增加,但同时循环水泵的耗功也会增加,当汽轮发电机组输出功率的增加量与循环水泵耗功的增加量之差达到最大时,即凝汽器达到了最佳真空。

55.静应力:

稳定工况下不随时间变化的应力。

56.动应力:

周期性激振力引起的振动应力。

57.激振力产生原因:

1)叶栅尾迹扰动2)结构扰动

58.临界转速:

启动或停机过程中出现振幅峰值的转速,称为临界转速。

合拍:

当自振频率等于激振力频率或前者是后者的整数倍而共振时,称为两者合拍。

59.调频叶片:

对于有些叶片要求其某个主振型频率与某类激振力频率避开才能安全运行,这个叶片对这一主振型称为调频叶片。

60.不调频叶片:

对有些叶片允许其某个主振型频率与某类激振力频率合拍而处于共振状态下长期运行,不会导致叶片疲劳破损,这个叶片对这一主振型成为不调频叶片。

61.耐振强度:

表示材料在承受动应力时的一种机械性能。

在某一温度和某一静压力下试件在空气环境中,作弯-弯试验,循环107次不被破坏可承受的最大动应力。

62.安全倍率:

表征叶片抵抗疲劳破坏的系数。

63.叶片的动频率:

考虑离心力影响后的叶片震动频率。

64.热应力:

汽轮机主要零件不能按照温度的变化规律进行自由胀缩,即热变形受到约束,则在零件内部引起应力,这种由温度引起的应力称为热应力。

65.热变形:

零部件由于温度变化而产生的膨胀或收缩变形称为热变形。

66.热应力产生条件:

1)有温度变化(必有热变形)2)热变形受到限制

67.一次调频:

因电负荷改变而引起电网频率变化时,电网中全部并列运行的机组均自动地按其静态特性承担一定的负荷变化,以减少电网频率的改变,称为一次调频。

68.二次调频:

二次调频就是在电网周波不符合要求时,操作电网中的某些机组的同步器,增加或减少他们的功率,使电网周波恢复正常。

69.调节系统的动态过渡时间:

调节系统受到扰动后,从调节过程开始到被调量与新的稳定值偏差小于允许值时的最短时间称为调节系统的动态过渡时间。

70.调速系统的迟缓率:

在同一功率下,转速上升过程与转速下降过程的特性曲线之间的转速差和额定转速之比的百分数,称为调节系统的迟缓率。

71.调节系统的静态特性:

在稳定状态下,汽轮机的功率与转速之间的关系。

72.速度变动率:

汽轮机空负荷时所对应的最大转速和额定负荷时所对应的最小转速之差,与汽轮机额定转速之比。

73.动态超调量:

汽轮机甩全负荷时,其转速在过渡过程中的最大转速与最后的稳定转速之差称为转速超调量。

74.速度调节:

根据汽轮机的转速来控制调节汽门的开度。

简答

1.冲动级和反动级的做功原理有何不同?

在相等直径和转速的情况下,比较二者的做功能力的大小并说明原因。

(8分)

答:

冲动级做功原理的特点是:

蒸汽只在喷嘴中膨胀,在动叶汽道中不膨胀加速,只改变流

动方向,动叶中只有动能向机械能的转化。

反动级做功原理的特点是:

蒸汽在动叶汽道中不仅改变流动方向,而且还进行膨胀加速。

动叶中既有动能向机械能的转化同时有部分热能转化成动能。

在同等直径和转速的情况下,纯冲动级和反动级的最佳速比比值:

/

=(

)im/(

)re=(

)/

=

/

=1/2

上式说明反动级的理想焓降比冲动级的小一倍

2.分别说明高压级内和低压级内主要包括哪几项损失?

答:

高压级内:

叶高损失、喷嘴损失、动叶损失、余速损失、扇形损失、漏气损失、叶轮摩擦损失等;

低压级内:

湿气损失、喷嘴损失、动叶损失、余速损失,扇形损失、漏气损失、叶轮摩擦损失很小。

3.简述在汽轮机的工作过程。

答:

具有一定压力和温度的蒸汽流经喷嘴,并在其中膨胀,蒸汽的压力、温度不断降低,速度不断升高,使蒸汽的热能转化为动能,喷嘴出口的高速汽流以一定的方向进入装在叶轮上的通道中,汽流给动叶片一作用力,推动叶轮旋转,即蒸汽在汽轮机中将热能转化为了机械功。

4.汽轮机级内有哪些损失?

答:

汽轮机级内的损失有:

喷嘴损失、动叶损失、余速损失、叶高损失、叶轮摩擦损失、部分进汽损失、漏汽损失、扇形损失、湿气损失9种。

5.指出汽轮机中喷嘴和动叶的作用。

答:

蒸汽通过喷嘴实现了由热能向动能的转换,通过动叶将动能转化为机械功。

6.据喷嘴斜切部分截面积变化图,请说明:

(1)当喷嘴出口截面上的压力比p1/p0大于或等于临界压比时,蒸汽的膨胀特点;

(2)当喷嘴出口截面上的压力比p1/p0小于临界压比时,蒸汽的膨胀特点。

答:

(1)p1/p0大于或等于临界压比时,喷嘴出口截面AC上的气流速度和方向与喉部界面AB相同,斜切部分不发生膨胀,只起导向作用。

(2)当喷嘴出口截面上的压力比p1/p0小于临界压比时,气流膨胀至AB时,压力等于临界压力,速度为临界速度。

且蒸汽在斜切部分ABC的稍前面部分继续膨胀,压力降低,速度增加,超过临界速度,且气流的方向偏转一个角度。

7.什么是速度比?

什么是级的轮周效率?

试分析纯冲动级余速不利用时,速度比对轮周效率的影响。

答:

将(级动叶的)圆周速度u与喷嘴出口(蒸汽的)速度c1的比值定义为速度比。

1kg蒸汽在轮周上所作的轮周功与整个级所消耗的蒸汽理想能量之比称为轮周效率。

在纯冲动级中,反动度Ωm=0,则其轮周效率可表示为:

ηu=2

叶型选定后,φ、ψ、α1、β1数值基本确定,由公式来看,随速比变化,轮周效率存在一个最大值。

同时,速比增大时,喷嘴损失不变,动叶损失减小,余速损失变化最大,当余速损失取最小时,轮周效率最大。

 

8.余速利用对最佳速比与轮周效率关系的影响:

1)增大了轮周效率

2)最佳速比附近轮轴效率敏感度下降,提高了适应工况变化的能力

3)使速比向增大方向移动

4)使轮周效率失去了对应于最高点的基本对称性

9.什么是汽轮机的最佳速比?

并应用最佳速度比公式分析,为什么在圆周速度相同的情况下,反动级能承担的焓降或做功能力比纯冲动级小?

答:

轮周效率最大时的速度比称为最佳速度比。

对于纯冲动级,

;反动级

;在圆周速度相同的情况下,

纯冲动级△ht=

=

反动级△ht=

=

由上式可比较得到,反动级能承担的焓降或做功能力比纯冲动级小。

10.简述蒸汽在轴流式汽轮机的冲动级、反动级和复速级内的能量转换特点,并比较它们的

效率及作工能力。

答:

冲动级介于纯冲动级和反动级之间,蒸汽的膨胀大部分发生在喷嘴中,只有少部分发生在动叶中;反动级蒸汽在喷嘴和动叶中理想比焓降相等;复速级喷嘴出口流速很高,高速气流流经第一列动叶作功后其具有余速的汽流流进导向叶柵,其方向与第二列动叶进汽方向一致后,再流经第二列动叶作功。

作功能力:

复速级最大,冲动级次之,反动级最小;

效率:

反动级最大,冲动级次之,复速级最小。

 

11.分别绘出纯冲动级和反动级的压力p、速度c变化的示意图。

答:

纯冲动级:

反动级:

C1

12.减小汽轮机中漏气损失的措施。

答:

为了减小漏气损失,应尽量减小径向间隙,但在汽轮机启动等情况下采用径向和轴向轴封;对于较长的扭叶片将动叶顶部削薄,缩短动叶顶部和气缸的间隙;还有减小叶顶反动度,可使动叶顶部前后压差不致过大。

13.减少湿气损失的措施:

1)采用有效去湿方法。

常用方法有:

a.由捕水口,捕水室和疏水通道组成的级内捕水装置。

B.具有吸水缝的空心喷嘴。

C.采用出气边喷射蒸汽的空心喷嘴。

2)提高动叶本身的抗冲蚀能力。

常用措施有:

A.采用耐冲蚀性强的叶片材料。

B.在叶片进气边背弧上镶焊硬质合金。

C.对叶片表面镀铬,局部高频淬硬,电火花强化,氮化等。

14.影响叶型损失的主要因素,分析节距对损失的影响。

影响叶型损失的组要因素有进气角,相对节距,气流马赫数。

节距增大时,腹面对气流约束减弱,背面出口段扩压范围和扩压程度增大,使叶型损失增大。

节距减小时,单位流量摩擦增厚,出口边相对厚度增加,尾迹损失增大。

15.简答多级汽轮机每一级的轴向推力是由哪几部分组成的?

平衡汽轮机的轴向推力可以采用哪些方法?

答:

多级汽轮机每一级的轴向推力由

(1)蒸汽作用在动叶上的轴向力

(2)蒸汽作用在叶轮轮面上的轴向力(3)蒸汽作用在转子凸肩上的轴向力(4)蒸汽作用隔板汽封和轴封套筒上的轴向推力组成。

平衡汽轮机的轴向推力可以采用:

(1)平衡活塞法;

(2)相反流动布置法

 

16.大功率汽轮机为什么都设计成多级汽轮机(多级汽轮机的优点)?

在h-s图上说明什么是多级汽轮机的重热现象?

答:

(1)大功率汽轮机多采用多级的原因为:

多级汽轮机的循环热效率大大高于单机汽轮机;多级汽轮机的相对内效率相对较高;多级汽轮机单位功率的投资大大减小。

(2)如下图:

第一级存在损失,使第二级进口温度由T1`升高到T1,故5-4的焓降大于2-3的焓降。

也就是在前一级有损失的情况下,本级进口温度升高,级的理想比焓降稍有增大,这就是重热现象。

17.何为汽轮机的进汽机构节流损失和排汽阻力损失?

在热力过程线上表示出来。

答:

由于蒸汽在汽轮机进汽机构中节流从而造成蒸汽在汽轮机中的理想焓降减小,称为进汽机构的节流损失。

减小措施:

1)控制阀门与管道中蒸汽流速。

2)采用带扩压管的阀门

汽轮机的乏汽从最后一级动叶排出后,由于排汽要在引至凝汽器的过程中克服摩擦、涡流等阻力造成的压力降低,该压力损失使汽轮机的理想焓降减少,该焓降损失称为排汽通道的阻力损失。

减小措施:

通过扩压把排气动能转化为静压,以补偿排气管中的压力损失。

 

18.轴封系统的作用,组成及特点是什么?

答:

作用:

A.利用轴封漏汽加热给水或到低压处作功。

B.防止蒸汽自汽封处漏入大气;

C.冷却轴封,防止高压端轴封处过多的热量传出至主轴承而造成轴承温度过高,影响轴承安全;

D.防止空气漏入汽轮机真空部分。

组成:

轴封,供气母管及均压箱,轴封调节器,轴封加热器和轴封抽气器等。

特点:

轴封分成多段多室,与大气环境接近的腔室的压力由抽气器或风机维持略低于大气压力,紧邻的腔室压力由压力调节器维持略高于大气压力,从而保证蒸汽不外泄,空气不内漏

19.说明汽轮机轴封间隙过大或过小对汽轮机分别产生什么影响?

答:

减小轴封漏气间隙,可以减小漏气,提高机组效率。

但是,轴封间隙又不能太小,以免转子和静子受热或振动引起径向变形不一致时,汽封片与主轴之间发生摩擦,造成局部发热和变形。

20.说明汽轮机喷嘴配汽方式的特点

答:

喷嘴配汽是依靠几个调门控制相应的调节级喷嘴来调节汽轮机的进汽量。

这种配汽方式具有如下特点:

1)部分进汽,e﹤1,满负荷时,仍存在部分进汽,所以效率比节流配汽低;

2)部分负荷时,只有那个部分开启的调节汽门中蒸汽节流较大,而其余全开汽门中的蒸汽节流已减小到最小,故定压运行时的喷嘴配汽与节流配汽相比,节流损失较少,效率较高,

21.写出分析汽轮机变工况运行的弗里格尔公式,并说明其使用的条件。

答:

弗留格尔公式为:

使用条件为:

保持设计工况和变工况下通汽面积不变。

若由于其他原因,使通汽面

积发生改变时应进行修正;同一工况下,各级的流量相等或成相同的比例关系;流过各级的汽流为一股均质流(调节级不能包括在级组内)。

 

22.用h-s图上的热力过程线分析说明喷嘴配汽定压运行与滑压运行哪一种运行方式对变负荷的适应性好。

答:

如图:

以高压缸在设计工况和75%设计负荷的热力过程线为例进行说明。

曲线A1B1C1、A1B2C2是定压运行机组100%设计工况和75%设计负荷的热力过程线,曲线A1D1、A2D2为滑压运行相应工况热力过程线。

由图可见,定压运行时排汽温度下降近60度,表明高压缸各级的温度变化较大,热应力和热变形较大,负荷变化时,灵活性和安全性较差;滑压运行下,排气温度保持在320度左右,即负荷变化时,高压缸热应力和热变形很小,从而增强了机组调峰的灵活性和安全性。

23.何种工况为调节级的最危险工况,为什么?

答:

调节级最危险工况为:

第一调节汽门全开,而其他调节汽门全关的情况。

当只有在上述情况下,不仅⊿htI最大,而且,流过第一喷嘴组的流量是第一喷嘴前压力等于调节汽门全开时第一级前压力情况下的临界流量,是第一喷嘴的最大流量,这段流量集中在第一喷嘴后的少数动叶上,使每片动叶分摊的蒸汽流量最大。

动叶的蒸汽作用力正比于流量和比焓降之积,因此此时调节级受力最大,是最危险工况。

P01

24.简述汽轮机初压不变,初温变化对汽轮机经济性和安全性的影响在其他参数不变的情况

下并说明汽轮机初压升高时,为什么说末级叶片危险性最大?

答:

初温不变,初压升高过多,将使主蒸汽管道、主汽门、调节汽门、导管等承压部件内部应力增大。

若调节汽门开度不变,则除压升高,致使新汽比容减小、蒸汽流量增大、功率增大、零件受力增大。

各级叶片的受力正比于流量而增大,流量增大时末级叶片的比焓降增大的更多,而叶片的受力正比于流量和比焓降之积,故此时末级运行安全性危险。

同时,流量增大还将使轴向推力增大。

25.分别指出凝汽式汽轮机和背压式汽轮机的轴向推力随负荷的变化规律。

答:

对于凝汽式汽轮机,负荷即流量变化时,各中间级焓降基本不变,因而反动度不变,

各级前后压差与流量程正比,即汽轮机轴向推力与流量成正比;同时,末级不遵循此规律,

调节级的轴向推力也是随部分进汽度而改变的,且最大负荷时,轴向推力最大,但调节级

和末级其轴向推力在总推力中所占比例较小,一般忽略,认为凝汽式汽轮机总轴向推力与

流量成正比,且最大负荷时轴向推力最大。

背压式与凝汽式相同。

26.分析说明汽轮机某一中间级在理想焓降减小时其反动度的变化情况。

答:

级的反动度变化主要是速比变化引起的,固定转速汽轮机圆周速度不变,此时反动度随

级的比焓降变化。

(如图)当比焓降减小即速比增大时,

减为

,动叶进口实际有效相对速度为

若反动度不变,则

;在喷嘴出口面积和动叶出口面积不变的情况下,喷嘴叶栅中以流出的汽流,来不及以的速度流出动叶栅,在动叶汽道内形成阻塞,造成动叶汽道与叶栅轴向间隙中压力升高,使反动度增大,从而使

减小,

增大,减轻动叶栅汽道的阻塞。

当比焓降增大时,则有

,故由上可知反动度降低。

27.节流配汽与喷嘴配气比较:

节流配汽:

优点:

没有调节级,结构简单,制造成本较低,定压运行工况变化时,各级温度变化较小,对负荷变化适应性较好。

缺点:

部分负荷时,节流损失较大,效率较低。

28.喷嘴配气:

优点:

部分负荷时效率较高。

缺点:

变工况时,温度变化较大,引起的热应力较大。

29.定滑定运行方式的优点:

汽轮机采用喷嘴配汽,高负荷区域内进行定压运行,用启闭调节汽门来调节负荷,汽轮机组初压较高,循环热效率较高,且负荷偏离设计值不远,相对内效率也较高。

较低负荷区域内仅全关最后一个,两个或三个调节汽门,进行滑压运行,这是没有部分开启汽门,节流损失相对最小,全机相对内效率接近设计值,负荷急剧增减时,可启闭调节汽门进行应急调节。

在滑压运行的最低负荷点之下又进行初压水平较低的定压运行,以免经济性降低太多。

26.汽轮机在负荷不变的情况下运行,凝汽器真空逐渐下降,分析可能存在哪些原因?

答:

汽轮机在运行过程中引起凝汽器真空缓慢下降的原因有:

(1)冷却水量缓慢减少

(2)冷却水管结垢或脏污

(3)冷却水温缓慢升高

(4)凝汽器的真空系统漏入空气

(5)抽气器效率下降

(6)部分冷却水管被堵

28.在冷却水量一定的前提下,当汽轮机负荷减小时,凝汽器真空将如何变化?

为什么?

答:

凝汽器内压力Pc,近似认为等于蒸汽分压力Ps,可由蒸汽凝结温度ts确定。

当冷却水

量Dw一定时,Δt=αDc,则蒸汽负荷降低时,α是常数,Δt正比于Dc降低;另外,由

得,当Dw一定,α是常数时,

随Dc的降低而减小;在水温不变的情

况下,可知ts=

+Δt+tw1减小,则蒸汽分压力降低,由总压力Pc与Ps近似相等可知,此时

凝汽器内压力降低,真空升高。

29.凝汽器中空气的主要来源有哪些?

空气的存在对凝汽器的工作有什么影响(危害)?

答:

空气的来源有:

新蒸汽带入汽轮机的空气;处于真空状态下的低压各级与相应的回热

系统、排汽缸、凝汽设备等不严密处漏入的。

空气的危害有:

空气阻碍蒸汽放热,使传热系数降低,从而使

升高,真空降低;空

气分压力Pa使Pc升高,使真空降低;空气使凝结水过冷度增大;凝结水中溶入氧量增大,

使管道腐蚀加剧。

30.什么是凝结水的过冷度?

过冷度太大对机组运行有何危害?

在凝汽器设计和运行中如何减小过冷度?

答:

(1)凝结水的温度比凝汽器喉部压力下的饱和温度低的数值,称为凝汽器的过冷度。

(2)当过冷度很大时,真空降低,凝结效果较差;同时,过冷度增大还会使凝结水中含氧量增大,增加了对低压管道的腐蚀。

(3)为减小凝汽器的过冷度,设计凝汽器时力求冷却水管束排列合理,加强凝汽器的密封性;机组运行时,选用合适的抽气器并监视确保正常工作,减少漏入空气,避免气阻增大,同时还要保证凝结水水位不至过高,使凝汽器处于较好的工作状态。

31.影响凝汽器内压力(真空)的因素:

1)冷却水进口温度(影响因素:

环境因素,冷却塔的冷却效果,水热回流情况,热风在循环情况)

2)冷却水温升(影响因素:

汽轮机排气量,冷却水量)

3)凝汽器端差(影响因素:

冷却面积,传热系数)传热系数影响因素:

结垢情况和凝汽器内空气含量

32.凝汽器的传热过程及各过程影响因素:

1)管外凝结放热(影响因素:

水膜厚度,汽侧空气含量)

2)管壁导热(影响因素:

管壁厚度和材质,管内结垢情况)

3)管

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 小学教育 > 语文

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2