转向压裂.doc

上传人:wj 文档编号:1123161 上传时间:2023-04-30 格式:DOC 页数:23 大小:324.50KB
下载 相关 举报
转向压裂.doc_第1页
第1页 / 共23页
转向压裂.doc_第2页
第2页 / 共23页
转向压裂.doc_第3页
第3页 / 共23页
转向压裂.doc_第4页
第4页 / 共23页
转向压裂.doc_第5页
第5页 / 共23页
转向压裂.doc_第6页
第6页 / 共23页
转向压裂.doc_第7页
第7页 / 共23页
转向压裂.doc_第8页
第8页 / 共23页
转向压裂.doc_第9页
第9页 / 共23页
转向压裂.doc_第10页
第10页 / 共23页
转向压裂.doc_第11页
第11页 / 共23页
转向压裂.doc_第12页
第12页 / 共23页
转向压裂.doc_第13页
第13页 / 共23页
转向压裂.doc_第14页
第14页 / 共23页
转向压裂.doc_第15页
第15页 / 共23页
转向压裂.doc_第16页
第16页 / 共23页
转向压裂.doc_第17页
第17页 / 共23页
转向压裂.doc_第18页
第18页 / 共23页
转向压裂.doc_第19页
第19页 / 共23页
转向压裂.doc_第20页
第20页 / 共23页
亲,该文档总共23页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

转向压裂.doc

《转向压裂.doc》由会员分享,可在线阅读,更多相关《转向压裂.doc(23页珍藏版)》请在冰点文库上搜索。

转向压裂.doc

第一章概述 1

第二章技术原理 4

一、暂堵转向重复压裂技术原理:

4

二、破裂机理研究 5

三、重复压裂裂缝延伸方式 7

第三章重复转向压裂时机研究 11

1、影响重复压裂效果因素 11

2、选井选层原则 11

3、压裂时机确定 11

第四章暂堵剂(转向剂) 12

1、堵剂性能要求:

12

2、堵剂体系 12

3、水溶性高分子材料堵剂 13

4、配套的压裂液 15

第五章转向压裂配套工艺技术 15

1、缝内转向压裂工艺技术 15

2.缝口转向压裂工艺技术 19

3、控制缝高压裂技术 21

4、端部脱砂压裂技术 23

第六章工艺评价 23

1.裂缝监测 23

2.施工压力 24

3.产能变化 24

第一章概述

我国发现的油气藏中60%以上为低渗透油气藏,往往具有非连续、非均质、各向异性的特点。

低渗油藏必须进行压裂改造,才能获得较好的效果。

随着开采程度的深入,老裂缝控制的原油已近全部采出,传统的平面水力裂缝设计方法和压裂技术已不能满足这类油藏开采的需求。

可以实施暂堵转向重复压裂,在纵向和平面上开启新层,开采出老裂缝控制区以外的原油,有效的稳油控水、提高原油产量和油田采收率,实现油田的可持续发展。

目前,国内外的重复压裂实践主要有以下三种方式:

①层内压出新裂缝;②继续延伸原有裂缝;③转向重复压裂。

对于重复压裂中出现的裂缝转向,目前认为主要有三种不同方式:

①地应力反转;②定向射孔诱导;③桥堵转向压裂工艺。

对于低渗储层,由于出现地应力场反转的难度较大,而采用定向射孔压裂造成裂缝转向,对储层伤害较大。

近些年,利用桥堵作用堵塞裂缝,形成转向的新裂缝的压裂工艺(缝内转向与缝口转向),经过现场实践,增产显著,逐步成为低渗储层重复改造的首选工艺。

在大规模试验研究的基础上,经过工艺优化配套,建立了以缝内转向压裂工艺为主导的低渗透重复压裂新模式。

它有效地在疏通原有人工主裂缝基础上形成了新的支裂缝,沟通了“死油区”,扩大油井泄油面积。

低渗透油田缝内转向压裂工艺的关键技术是缝内转向剂技术。

依靠该技术产品,实现了裂缝延伸的暂时停止,达到了在缝内某一位置实现裂缝转向的目标。

为证实缝内转向压裂沟通微裂缝和形成新裂缝,利用微地震法在施工时裂缝延伸进行动态监测。

综合分析水力压裂裂缝延伸监测结果、重复压裂效果、施工压力特征,能证明缝内转向重复压裂在疏通原有裂缝的基础上,是否产生了沟通微裂缝或者形成新裂缝。

缝内转向压裂工艺在低渗透油田应用概况:

在老井上的应用概况:

2002-2007年,缝内转向压裂工艺在老井上推广应用487口井,增产效果明显。

安塞油田应用332口井,日增油1.40t,陇东油田68口井,日增油1.95t。

已逐渐成为长庆、低渗透油田老井重复压裂主要推广技术之一。

在新井上的应用概况:

2006年缝内转向压裂工艺技术在新井共推广应用46口井,在储层条件明显差于常规压裂井的前提下,试油产量及投产产量接近或高于常规压裂井。

这说明以缝内转向压裂工艺为主体的复合压裂技术对储层的改造更为彻底,因此油井生产能力要高于常规压裂井。

3.转向压裂与常规重复压裂对比

常规重复压裂主要以解除堵塞及延长老裂缝为目的,而转向压裂主要以形成新裂缝为目标,分析认为相对于常规重复压裂,转向压裂具有较好的发展优势(见表1)。

第二章技术原理

一、暂堵转向重复压裂技术原理:

转向压裂:

在压裂施工中,应用化学暂堵剂的桥堵作用暂堵老缝或已加砂缝,,提升井底静压力,使流体在地层中发生转向,形成不同于老裂缝方向的新裂缝或使压裂砂在裂缝中均匀分布,从而在储层中打开新的流体流动通道,更大范围地沟通老裂缝未动用的油气层,增加油气产量,这样的工艺过程称之为转向压裂。

主要作用有:

纵向剖面的新层启动;

重复压裂的平面上的裂缝转向;

裂缝单向延伸的控制。

可广泛应用于重复压裂、细分层压裂、套变井及落物井压裂。

暂堵转向重复压裂技术的实施方法是在施工过程中实时地向地层中加入化学暂堵剂,该剂为粘弹性的固体小颗粒,遵循流体向阻力最小方向流动的原则,转向剂颗粒进入井筒的炮眼,部分进入地层中的裂缝或高渗透层,在炮眼处和高渗透带产生滤饼桥堵,可以形成高于裂缝破裂压力的压差值,使后续工作液不能向裂缝和高渗透带进入,从而压裂液进入高应力区或新裂缝层,促使新缝的产生和支撑剂的铺置变化。

产生桥堵的转向剂在施工完成后溶于地层水或压裂液,不对地层产生污染。

针对不同储层特性、不同封堵控制的作用,经过拟合计算确定不同的有效用量。

通过特殊工艺技术,可实现支撑剂均匀分布。

二、破裂机理研究

根据弹性力学理论和岩石破裂准则,裂缝总是沿着垂直于最小水平主应力的方向启裂,因此,重复压裂井中的应力场分布决定了重压新裂缝的启裂和延伸。

1、储层原地应力场

地下岩石的应力状态,可以用三个相互垂直且不相等的主应力表示。

水力压裂测试

地电测定

声波测定

阶梯式注入/返排测试方法

测井资料解释

方位

大小

地应力

测量井径变化

岩心测试

2、诱导应力场

(1)裂缝诱导应力场

x=0处,诱导应力最大,离缝越远,诱导应力越小,一定距离处,诱导应力变为零;

缝口诱导应力最大,缝端诱导应力最小;

垂直于裂缝方向诱导水平应力大,裂缝方向诱导水平应力小。

(2)生产诱导应力场

油井长期生产,通常会导致地层孔隙压力下降,引起原地应力状态的改变。

研究表明:

孔隙压力减少,使水平应力降低。

且在裂缝方向强于垂直于裂缝方向的区域。

所以最大水平主应力减小得比最小水平主应力多。

3、破裂机理研究

初次人工裂缝诱导应力以及生产诱导应力改变了油气井周围的应力分布状况。

当诱导应力差足以改变地层中的初始应力差,则在井筒和初始裂缝周围的椭圆形区域内应力重定向,从而新裂缝发生转向。

三、重复压裂裂缝延伸方式

1、新裂缝延伸规律

重复压裂能否形成新裂缝,主要取决于储层地应力场变化的结果。

垂直于裂缝方向附加的诱导应力大,裂缝方向上附加诱导应力小,可能使σxmin+σx诱导>σymax+σy诱导,重复压裂裂缝的重新定向就有可能发生。

井筒附近重复压裂新裂缝将以与初始裂缝呈90°的方位角延伸。

距井筒一段距离后,裂缝仍沿原来的方位延伸。

2、裂缝转向后扩展方向

(1)储层岩石应力强度因子

应力强度因子是描述缝端附近应力场强弱的重要参数。

压剪情况下含裂缝单元体的受力条件如下图所示:

根据断裂力学理论,裂缝端部应力强度因子:

已知和,即可计算出等效应力强度因子和裂缝扩展角度:

    等效应力强度因子=时,裂缝开始延伸。

3、裂缝转向后延伸方向与缝长

具体步骤:

 

(1)计算、和;

 

(2)裂缝开裂判断。

(、)

 (3)根据得到的,沿着原裂缝逆时针方向令裂缝扩展某一小量长度Δa,求出新;

 (4)判断裂缝是否继续扩展,若扩展,计算θ1;

(5)计算重复压裂转向裂缝延伸轨迹坐标方程和转向裂缝延伸长度。

(6)当裂缝与初始水力裂缝平行或者《时,转向裂缝延伸完毕,否则,回到步骤(3)继续计算。

因此,垂直裂缝井新裂缝的延伸可能由三部分组成:

1.应力转向区内垂直初始裂缝缝长方向,穿透深度为;

2.应力转向区后,逐渐转向到初始裂缝缝长方向,穿透深度为;

3.转向到原始水力裂缝方向并稳定延伸。

第三章重复转向压裂时机研究

1、影响重复压裂效果因素

地质因素:

剩余可采储量、地层压力、有效渗透率、有效厚度、地下原油粘度、含水率。

工程因素:

裂缝方位:

支撑裂缝诱导应力、生产诱导应力;重复压裂材料:

压裂液、支撑剂。

2、选井选层原则

1、油井控制足够的剩余可采储量和地层能量;2、前次压裂的规模偏小,产量下降较快的井;3、前次压裂的支撑裂缝已失效,产量下降快;4、前次压裂施工失败的井;5、前次压裂目的层跨度大,油层未得到充分改造。

3、压裂时机确定

重复压裂时机是重复压裂成败的关键之一,通常有如下两个确定准则:

1.当第一次压裂失效后进行重复压裂;

2.当地层压力系数达到一定值时进行重复压裂。

第四章暂堵剂(转向剂)

1、堵剂性能要求:

强度高、形成滤饼、可溶性好、有利于返排、方法操作简单、时间可控。

2、堵剂体系

1.悬浮性堵剂:

因为紊流作用和炮眼变形难以形成很大的压差阻力,封堵率只能达到70%,不能形成滤饼。

2.地下交联型堵剂:

小剂量达不到所需压力,剂量大会形成新的伤害,虽然可以形成滤饼但地下反应不稳定,达不到所需的强度。

3.地面一次交联的颗粒堵剂:

小剂量达不到所需压力,剂量大会形成新的伤害,虽然可以形成滤饼但地下反应不稳定,达不到所需的强度;地面一次交联的颗粒堵剂,自身强度大,但因为在地下很难形成滤饼,同样存在封堵率不好,压裂液滤失问题。

4.通常选用水溶性高分子材料堵剂:

承压能力高、易形成滤饼、封堵率高,水溶性好,且用量少,压后完全溶解无污染。

该堵剂是在地面高温高压条件下,经交联反应以及物理法的势能活化得到的颗粒型堵剂(白色或棕褐色有机组分颗粒,粒径6—8mm)。

是化学反应与物理势能相互催化的复合体。

其一次交联是在生产时完成物化反应,形成颗粒。

在应用时,颗粒随液体进入炮眼和裂缝后,在压力差下获得势能后继续反应交联,形成高强度的滤饼。

3、水溶性高分子材料堵剂

1.暂堵剂的强度

采用人造充填岩心的方法,通过使用岩心流动实验仪测定其突破压力,来确定暂堵剂的强度,岩心使用压裂砂充填而成,充填后的岩心试验结果见表1.暂堵剂的耐压差为10—85Mpa。

岩心长度(㎝)

20

岩心截面尺寸(㎝)

3.5×3.5

孔隙度(%)

25.74

孔隙体积(ml)

38.45

基质渗透率μm²

0.09

注水压力与流量关系

(㎝水注—ml/min)

9.16X+0.08

裂缝渗透率μm²

30

滤饼阴力系数Fr’

79.6

空破压力梯度(Mpa/cm)

2.17

封堵率(%)

99.2

表1岩心封堵实验结果

2.溶解时间及水不溶物

实验结果显示,在50℃的条件下,暂堵剂在水中的溶解时间为1小时,在10%的KCl液中溶解时间为1.5小时,在压裂液中溶解时间为2.5小时。

将盛有蒸馏水和暂堵剂的烧杯放入30℃的水浴中,盖上表面皿,恒温溶解3小时,通过一系列搅拌得到暂堵剂不溶物的百分比(表2)。

 

样品1

样品2

离心管质量g

23.9126

22.7451

试样质量g

0.2

0.2

烘后离心管和试样质量g

23.9147

22.7465

水不溶物质量g

0.0021

0.0014

水不溶物百分率

1.05%

0.7%

算术平均值

0.875%

表2水不溶物测定

3.应用范围

此暂堵剂广泛应用于重复压裂,细分层压裂、套变井及落物井压裂,近年来在转向压裂,多裂缝压裂,有效缝长控制领域中得到了广泛的应用:

(1)多层合压时,可在纵向剖面上动用新层,改善油藏产出剖面;

(2)在同层压裂中堵老缝,造新缝,使新裂缝在平面上相对于原有裂缝发生转向,沟通新的泄油区;

(3)控制支撑剂铺置方向,控制有效缝长,改善裂缝内支撑剂的用效分布,用于微裂缝发育条件下的压裂,减少滤失。

降低砂堵风险;

(4)在套变井\落物井上实现分层压裂。

4、配套的压裂液

压裂液选用硼交联羟丙基胍胶压裂液,破胶剂采用过硫酸铵(APS),交联比为100:

12—15。

室内与现场试验表明,压裂液在3.5Mpa,45。

C下滤失系数为6.08*10-4m/min,初滤失量为1.2cm3/min;压裂液破胶液表面张力为31.8mN/m。

对压后放喷反排的残液进行测量,粘度为2—5mPa.s。

第五章转向压裂配套工艺技术

1、缝内转向压裂工艺技术

缝内转向压裂工艺:

依据岩石破裂机理,通过桥堵剂(缝内暂堵转向剂)对储层内先前的水力压裂老裂缝形成颗粒桥堵作用,提高井底及水力压裂裂缝净压力,超过老裂缝中薄弱部位的破裂压力,从而沟通天然微裂缝及形成新裂缝,这样的工艺过程即缝内转向压裂工艺。

常规压裂示意图

缝内转向压裂示意图

借助于缝内转向剂在主裂缝产生桥堵作用,使主裂缝内产生升压效应,从而压开新的支裂缝或沟通更多微裂缝,在增大油层泄流面积的同时,促使压裂裂缝向注水水线靠近,缩短注水见效时间,提高注水见效效果,使油井在增产的同时能够保持稳产,从而提高采收率。

实现裂缝转向的力学条件:

裂缝延伸遵循能量最小原则,常规压裂裂缝延伸方向受控的力学条件是:

σHmax+T>P≥σHmin+T

若能使P≥σHmax+T,即当缝内压力升高幅度ΔP≥σHmax-σHmin,压裂裂缝可摆脱水平应力的束缚,改变延伸和扩展方向。

P:

缝内压力

T:

岩石扩张强度

σHmax:

水平最大主应力

σHmin:

水平最小主应力

提高裂缝内压力是实现裂缝转向的必要条件。

缝内转向压裂工艺技术的实施

(1)施工工艺

在缝内转向压裂施工中,桥堵剂的加入采取通过混砂池中加入,通过主压车高压柱塞泵注入地层,整个压裂施工基本为连续施工,不需对目前的压裂方式进行修改,因此降低了施工难度。

具体施工工艺为:

加入前置液—加入携砂液—加入转向剂—加入前置液—加入携砂液。

(2)施工曲线

缝内转向压裂施工,由于整个施工过程比较连续,在没有砂堵等异常情况时,整个施工曲线连续不断。

(3)桥堵剂特征

缝内转向的压裂施工中,采用的桥堵转向剂为油溶性,在排液过程中,由于地层中产出的原油对转向剂的溶解作用,使转向剂的暂堵作用随着原油的产出而逐渐消失。

(4)工艺发展

由于缝内转向压裂可以通过一定的加砂过程对老裂缝进行重新充填,实现压裂施工后老裂缝与新裂缝同时生产,因此对于堵塞引起的低产井,缝内转向具有较好的增产优势。

2.缝口转向压裂工艺技术

通过桥堵剂(可形成滤饼的粘弹性的固体颗粒),遵循流体向阻力最小方向流动的原则,颗粒进入井筒的炮眼,部分进入地层中的裂缝端部或高渗透层,在炮眼处和高渗透带产生滤饼桥堵,封堵先前的老裂缝,提高井筒中压力,从而使压裂液进入高应力区或新裂缝层,从而在井筒周围产生新裂缝,这样的工艺过程即缝口转向压裂。

缝口转向压裂工艺技术的实施

(1)施工工艺

一般的施工工艺为:

注前置液-携砂液-加可溶性转向剂-阶段前置液-携砂液-顶替液;针对老裂缝控制储量已开采完且裂缝成为主要水通道,则应该用永久性封堵剂堵死老裂缝,然后进行正常压裂.在缝口转向压裂施工中,目前桥堵剂的加入通过采取在压裂井口或者高压管线上连接旁通管线,将桥堵剂加入到旁通管线或者容器中,通过400型水泥车等措施在低压条件下缓慢将桥堵剂推向井底。

在顶替一定量的液体后,主压车开始进行后续的主压裂施工。

(2)施工曲线

缝口转向压裂施工,由于转向剂加入时压裂车是不工作的,因此压裂曲线上在主压裂开始前一定时间内出现排量为0的记录显示。

(3)桥堵剂特征

缝口转向的压裂施工中,采用的桥堵转向剂为水溶性,转向剂的水不溶物含量一般小于5%,随着排液过程,转向剂溶于返排液中,使得转向剂对于老裂缝的暂堵作用逐渐消失。

(4)工艺发展

缝口转向通过优化桥堵剂,使其具备长期封堵能力后,可以发展演变为堵水压裂联作工艺,对于提高水淹井的重复压裂效果具有较大的潜力。

3、控制缝高压裂技术

高含水油田,需将裂缝高度控制在生产层内;可配合采用控缝高压裂技术,最大限度地实现裂缝纵深发展。

基本原理:

将上浮式和下沉式导向剂随着压裂液在裂缝中流动,并在裂缝顶部和底部形成人工遮挡层,阻止裂缝中压力向上下传播,控制裂缝在高度方向上进一步延伸,形成较长的支撑裂缝。

对于暂堵转向的重复压裂改造井,控缝高技术是一项必要配套技术。

4、端部脱砂压裂技术

实质:

有控制地使支撑剂在裂缝端部脱出,桥架形成端部砂堵,阻止裂缝向缝长方向进一步延伸。

继续注入高砂比混砂液,沿缝尖形成全面砂堵,缝中储液量增加,泵压增大,促使裂缝膨胀变宽,造成一条具有很高导流能力的裂缝。

可配合采用控缝高技术控制裂缝在高度方向进一步延伸。

总之,端部脱砂技术是一项必要的配套技术。

第六章工艺评价

1.裂缝监测

在压裂过程中,地层不断开裂产生多次微地震波,微地震源点不断出现,监测并求出这些源点的位置,显示在坐标图上,根据压裂井与这些源点的相对位置,即可得出压裂裂缝的长度和走向。

通过裂缝监测,在转向压裂施工中可明显产生新裂缝,新老裂缝的方位和长度均能有较为定量的结果,但是新裂缝的产生位置却不能有明确的判断。

2.施工压力

在常规重复压裂施工中,由于裂缝在老裂缝内延伸,施工压力的最高值一般在加入前置液阶段。

在缝口转向压裂施工中,由于桥堵剂在主压裂施工前加入,施工压力主要表现在前置液阶段有明显破压,破压值一般高于首次压裂的破压值。

而在缝内转向压裂施工中,加入转向剂后压力曲线反映有较为明显二次破压或沟通微裂缝的压力

上升—下降特征显示。

同时转向压裂施工工作压力在相当长时段明显

高于加入转向剂前工作压力,具有台阶形态。

据套压监测结果,可见明显套压升高显示。

3.产能变化

进行成功的转向压裂施工后,由于新裂缝的产生,油井的泄油面积会有较大的增加,因此油井的产能会出现明显的增加,表现出明显的增产结果,部分井也会出现含水下降。

压裂裂缝控制技术是应用化学暂堵剂使流体在地层中发生转向,在压裂中可以暂堵老缝或已加砂缝,从而造出新缝或使压裂砂在裂缝中均匀分布。

主要作用有:

纵向剖面的新层启动;重复压裂的平面上的裂缝转向;裂缝单向延伸的控制。

可广泛应用于重复压裂、细分层压裂、套变井及落物井压裂。

  控制技术的实施方法是在施工过程中实时地向地层中加入化学暂堵剂,该剂为粘弹性的固体小颗粒,遵循流体向阻力最小方向流动的原则,转向剂颗粒进入井筒的炮眼,部分进入地层中的裂缝或高渗透层,在炮眼处和高渗透带产生滤饼桥堵,可以形成高于裂缝破裂压力的压差值,使后续工作液不能向裂缝和高渗透带进入,从而压裂液进入高应力区或新裂缝层,促使新缝的产生和支撑剂的铺置变化。

产生桥堵的转向剂在施工完成后溶于地层水或压裂液,不对地层产生污染。

  针对不同储层特性、不同封堵控制的作用,经过拟合计算确定不同的有效用量。

通过特殊工艺技术,可实现支撑剂均匀分布在裂缝中、控制裂缝延伸有效长度、实现多裂缝的形成、实现重复压裂裂缝转向等充分挖掘剩余油富集区域、调整注采关系的改造工艺技术。

  

借助于缝内转向剂在主裂缝产生桥堵作用,使主裂缝内产生升压效应,从而压开新的支裂缝或沟通更多微裂缝,在增大油层泄流面积的同时,促使压裂裂缝向注水水线靠近,缩短注水见效时间,提高注水见效效果,使油井在增产的同时能够保持稳产,从而提高采收率。

人工暂堵压裂是在压裂过程中实时加入暂堵剂,以暂堵老缝或已加砂缝。

通过破裂压力。

裂缝延伸压力的变化使流体发生转向,从而造出新缝,其提高重复压裂效果的机理是使重复压裂产生的新裂缝沿与前次人工裂缝不同的方向起裂和延伸,在油气层中打开新的油气流通道的同时,更大限度沟通、改造、动用剩余油富集区和动用程度低甚至未动用的储层。

理论上它是通过恢复或提高原有裂缝导流能力的常规复压技术的补充和发展,是提高油层挖潜水平的有利手段。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 工程科技 > 能源化工

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2