基于单片机的数字温度计.docx

上传人:b****4 文档编号:11405191 上传时间:2023-05-31 格式:DOCX 页数:35 大小:523.47KB
下载 相关 举报
基于单片机的数字温度计.docx_第1页
第1页 / 共35页
基于单片机的数字温度计.docx_第2页
第2页 / 共35页
基于单片机的数字温度计.docx_第3页
第3页 / 共35页
基于单片机的数字温度计.docx_第4页
第4页 / 共35页
基于单片机的数字温度计.docx_第5页
第5页 / 共35页
基于单片机的数字温度计.docx_第6页
第6页 / 共35页
基于单片机的数字温度计.docx_第7页
第7页 / 共35页
基于单片机的数字温度计.docx_第8页
第8页 / 共35页
基于单片机的数字温度计.docx_第9页
第9页 / 共35页
基于单片机的数字温度计.docx_第10页
第10页 / 共35页
基于单片机的数字温度计.docx_第11页
第11页 / 共35页
基于单片机的数字温度计.docx_第12页
第12页 / 共35页
基于单片机的数字温度计.docx_第13页
第13页 / 共35页
基于单片机的数字温度计.docx_第14页
第14页 / 共35页
基于单片机的数字温度计.docx_第15页
第15页 / 共35页
基于单片机的数字温度计.docx_第16页
第16页 / 共35页
基于单片机的数字温度计.docx_第17页
第17页 / 共35页
基于单片机的数字温度计.docx_第18页
第18页 / 共35页
基于单片机的数字温度计.docx_第19页
第19页 / 共35页
基于单片机的数字温度计.docx_第20页
第20页 / 共35页
亲,该文档总共35页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

基于单片机的数字温度计.docx

《基于单片机的数字温度计.docx》由会员分享,可在线阅读,更多相关《基于单片机的数字温度计.docx(35页珍藏版)》请在冰点文库上搜索。

基于单片机的数字温度计.docx

基于单片机的数字温度计

成绩

 

课程设计说明书

 

 

课程设计名称:

微机控制与接口技术课程计

题目:

基于单片机的数字温度计

学生姓名:

专业:

电气工程与自动化

学号:

312008080608428

指导教师:

陈立功

日期:

2012年1月6日

基于单片机的数字温度计设计

摘要

随着国民经济的发展,人们需要对各中加热炉、热处理炉、反应炉和锅炉中温度进行监测和控制。

采用单片机来对他们控制不仅具有控制方便,简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大的提高产品的质量和数量。

在日常生活及工业生产过程中,经常要用到温度的检测及控制,温度是生产过程和科学实验中普遍而且重要的物理参数之一。

在生产过程中,为了高效地进行生产,必须对它的主要参数,如温度、压力、流量等进行有效的控制。

温度控制在生产过程中占有相当大的比例。

温度测量是温度控制的基础,技术已经比较成熟。

传统的测温元件有热电偶和二电阻。

而热电偶和热电阻测出的一般都是电压,再转换成对应的温度,这些方法相对比较复杂,需要比较多的外部硬件支持。

我们用一种相对比较简单的方式来测量。

我们采用美国DALLAS半导体公司继DS18B20之后推出的一种改进型智能温度传感器DS18B20作为检测元件,温度范围为-55~125ºC,最高分辨率可达0.0625ºC。

DS18B20可以直接读出北侧温度值,而且采用三线制与单片机相连,减少了外部的硬件电路,具有低成本和易使用的特点。

本文介绍一种基于AT89C51单片机的一种温度测量及报警电路,该电路采用DS18B20作为温度监测元件,测量范围0℃-~+100℃,使用LED模块显示,能设置温度报警上下限。

正文着重给出了软硬件系统的各部分电路,介绍了集成温度传感器DS18B20的原理,AT89C51单片机功能和应用。

该电路设计新颖、功能强大、结构简单。

关键词:

温度测量;DS18B20;AT89C51

DesignofDigitalThermomerBasedonSCM

Abstract

Alongwithnationaleconomydevelopment,thepeopleneedtoeachheatingfurnace、theheat-treatmentfurnace、inthereactorandtheboilerthetemperaturecarryonthemonitorandthecontrol.Notonlyusesthemonolithicintegratedcircuittocometothemtocontrolhasthecontroltobeconvenient,simpleandflexibilitybigandsoonmerits,moreovermayenhancelargescaleisaccusedthetemperaturetechnicalspecification,thuscanbigenhancetheproductthequalityandquantity.

Indailylifeandindustrialproductionprocess,oftenusedinthedetectionandcontroloftemperature,temperatureistheproductionprocessandscientificexperimentsingeneralandoneoftheimportantphysicalparameter.Intheproductionprocess,inordertoefficientlycarryouttheproduction,tobeitsmainparameters,suchastemperature,pressure,flowcontrol,etc...Temperaturecontrolintheproductionprocessofalargeproportion.Temperaturemeasurementisthebasisoftemperature-controlled,morematuretechnology.Traditionalthermocoupleandtemperaturecomponentsarethesecondresistor.Thethermocoupleandthermalresistancearegenerallymeasuredvoltage,andthenreplacedbythecorrespondingtemperature,thesemethodsarerelativelycomplex,requiringarelativelylargenumberofexternalhardwaresupport.Weusearelativelysimplewaytomeasure.

WeusetheUnitedStatesfollowingDALLASSemiconductorDS1820improvedaftertheintroductionofasmarttemperaturesensorDS18B20asthedetectionelement,atemperaturerangeof-55~125ºC,uptoamaximumresolutionof0.0625ºC.DS18B20canbedirectlyreadoutthetemperatureonthenorthside,andthree-wiresystemwithsingle-chipconnectedtoadecreaseoftheexternalhardwarecircuit,withlow-costandeasyuse.

Theintroductionofacost-basedAT89C51MCUatemperaturmeasurementcircuits,thecircuitsusedDS18B20high-precisiontemperatursensor,measuringscope0℃-~+100℃,cansetthewarninglimitation,theuseofsevensegmentsLEDthatcanbedisplaythecurrenttemperature.Thepaperfocusesonprovidingasoftwareandhardwaresystemcomponentscircuit,introducedthetheoryofDS18B20,thefounctionsandapplicationsofAT89C51.Thiscircuitdesigninnovative,powerful,canbeexpansionarystrong.

Keywords:

Temperaturmeasurement;DS18B20;AT89C51 

 

目录

一、前言1

1.1课题背景及研究意义1

1.2国内外现状1

二、总体方案设计2

2.1方案介绍2

2.1.1方案一2

2.1.2方案二3

2.2方案选择4

三、单元模块设计4

3.1单片机模块4

3.1.1单片机介绍4

3.1.2单片机模块功能8

3.2温度采集模块10

3.2.1DS18B20介绍10

3.2.2温度传感器工作原理10

3.2.3DS18B20使用介绍12

3.2.4DS18B20使用中的注意事项13

3.3显示模块14

3.3.1LCD液晶显示器简介14

3.3.2.LM016L的结构及功能:

15

3.3.3液晶显示部分与89C51的接口17

四、软件设计18

4.1主程序设计18

4.2DS18B20初始化19

五、软件调试20

5.1程序调试20

5.2系统调试21

5.3数据检测22

5.4仿真结果22

5.5本章小结25

六、设计总结25

参考文献27

附录A系统整体电路28

附录B全部程序清单29

一、前言

1.1课题背景及研究意义

随着新技术的不断开发与应用,近年来单片机发展十分迅速,一个以微机应用为主的新技术革命浪潮正在蓬勃兴起,单片机的应用已经渗透到电力、冶金、化工、建材、机械、食品、石油等各个行业。

传统的温度采集方法不仅费时费力,而且精度差,单片机的出现使得温度的采集和数据处理问题能够得到很好的解决。

温度是工业对象中的一个重要的被控参数。

然而所采用的测温元件和测量方法也不相同;产品的工艺不同,控制温度的精度也不相同。

因此对数据采集的精度和采用的控制方法也不相同。

传统的控制方式以不能满足高精度,高速度的控制要求,如温度控制表温度接触器,其主要缺点是温度波动范围大,由于他主要通过控制接触器的通断时间比例来达到改变加热功率的目的,受仪表本身误差和交流接触器的寿命限制,通断频率很低。

近几年来快速发展了多种先进的温度控制方式,如:

PID控制,模糊控制,神经网络及遗传算法控制等。

这些控制技术大大的提高了控制精度,不但使控制变得简便,而且使产品的质量更好,降低了产品的成本,提高了生产效率。

本系统所使用的加热器件是电炉丝,功率为三千瓦,要求温度在400~1000℃。

静态控制精度为2.43℃。

本设计使用单片机作为核心进行控制。

单片机具有集成度高,通用性好,功能强,特别是体积小,重量轻,耗能低,可靠性高,抗干扰能力强和使用方便等独特优点,在数字、智能化方面有广泛的用途。

1.2国内外现状

温度控制系统在国内各行各业的应用虽然已经十分广泛,但从国内生产的温度控制器来讲,总体发展水平仍然不高,同日本、美国、德国等先进国家相比,仍然有着较大的差距。

成熟的温控产品主要以“点位”控制及常规的PID控制器为主,它们只能适应一般温度系统控制,而用于较高控制场合的智能化、自适应控制仪表,国内技术还不十分成熟,形成商品化并广泛应用的控制仪表较少。

随着我国经济的发展及加入WTO,我国政府及企业对此都非常重视,对相关企业资源进行了重组,相继建立了一些国家、企业的研发中心,开展创新性研究,使我国仪表工业得到了迅速的发展。

单片机是指一个集成在一块芯片上的完整计算机系统。

尽管他的大部分功能集成在一块小芯片上,但是它具有一个完整计算机所需要的大部分部件:

CPU、内存、内部和外部总线系统,目前大部分还会具有外存。

同时集成诸如通讯接口、定时器,实时时钟等外围设备。

而现在最强大的单片机系统甚至可以将声音、图像、网络、复杂的输入输出系统集成在一块芯片上。

单片机也被称为微控制器(Microcontroller),是因为它最早被用在工业控制领域。

单片机由芯片内仅有CPU的专用处理器发展而来。

最早的设计理念是通过将大量外围设备和CPU集成在一个芯片中,使计算机系统更小,更容易集成进复杂的而对体积要求严格的控制设备当中。

INTEL的Z80是最早按照这种思想设计出的处理器,从此以后,单片机和专用处理器的发展便分道扬镳。

早期的单片机都是8位或4位的。

其中最成功的是INTEL的8031,因为简单可靠而性能不错获得了很大的好评。

此后在8031上发展出了MCS51系列单片机系统。

基于这一系统的单片机系统直到现在还在广泛使用。

随着工业控制领域要求的提高,开始出现了16位单片机,但因为性价比不理想并未得到很广泛的应用。

90年代后随着消费电子产品大发展,单片机技术得到了巨大的提高。

随着INTELi960系列特别是后来的ARM系列的广泛应用,32位单片机迅速取代16位单片机的高端地位,并且进入主流市场。

而传统的8位单片机的性能也得到了飞速提高,处理能力比起80年代提高了数百倍。

目前,高端的32位单片机主频已经超过300MHz,性能直追90年代中期的专用处理器,而普通的型号出厂价格跌落至1美元,最高端的型号也只有10美元。

当代单片机系统已经不再只在裸机环境下开发和使用,大量专用的嵌入式操作系统被广泛应用在全系列的单片机上。

而在作为掌上电脑和手机核心处理的高端单片机甚至可以直接使用专用的Windows和Linux操作系统。

二、总体方案设计

2.1方案介绍

该系统主要由温度测量和数据采集两部分电路组成,实现的方法有很多种,下面将列出两种在日常生活中和工农业生产中经常用到的实现方案。

2.1.1方案一

采用热电偶温差电路测温,温度检测部分可以使用低温热偶,热电偶由两个焊接在一起的异金属导线所组成,热电偶产生的热电势由两种金属的接触电势和单一导体的温差电势组成。

通过将参考结点保持在已知温度并测量该电压,便可推断出检测结点的温度。

数据采集部分则使用带有A/D通道的单片机,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来。

热电偶的优点是工作温度范围非常宽,且体积小,但是它们也存在着输出电压小、容易遭受来自导线环路的噪声影响以及漂移较高的缺点,并且这种设计需要用到A/D转换电路,感温电路比较麻烦。

系统主要包括对A/D0809的数据采集,自动手动工作方式检测,温度的显示等,这几项功能的信号通过输入输出电路经单片机处理。

此外还有复位电路,晶振电路,启动电路等。

故现场输入硬件有手动复位键、A/D转换芯片,处理芯片为51芯片,执行机构有4位数码管、报警器等。

【1】

系统框图如图2-1所示。

图2-1热电偶温差电路测温系统框图

2.1.2方案二

采用数字温度芯片DS18B20测量温度,输出信号全数字化。

便于单片机处理及控制,省去传统的测温方法的很多外围电路。

且该芯片的物理化学性很稳定,它能用做工业测温元件,此元件线形较好。

在0—100摄氏度时,最大线形偏差小于1摄氏度。

DS18B20的最大特点之一采用了单总线的数据传输,由数字温度计DS18B20和微控制器AT89S51构成的温度测量装置,它直接输出温度的数字信号,可直接与计算机连接。

这样,测温系统的结构就比较简单,体积也不大。

采用51单片机控制,软件编程的自由度大,可通过编程实现各种各样的算术算法和逻辑控制,而且体积小,硬件实现简单,安装方便。

既可以单独对多DS18B20控制工作,还可以与PC机通信上传数据,另外AT89S51在工业控制上也有着广泛的应用,编程技术及外围功能电路的配合使用都很成熟。

【1】

该系统利用AT89S51芯片控制温度传感器DS18B20进行实时温度检测并显示,能够实现快速测量环境温度,并可以根据需要设定上下限报警温度。

该系统扩展性非常强,它可以在设计中加入时钟芯片DS1302以获取时间数据,在数据处理同时显示时间,并可以利用AT24C16芯片作为存储器件,以此来对某些时间点的温度数据进行存储,利用键盘来进行调时和温度查询,获得的数据可以通过MAX232芯片与计算机的RS232接口进行串口通信,方便的采集和整理时间温度数据。

2.2方案选择

从以上两种方案,容易看出方案一的测温装置可测温度范围宽、体积小,但是线性误差较大。

方案二的测温装置电路简单、精确度较高、实现方便、软件设计也比较简单,故本次设计采用了方案二。

三、单元模块设计

3.1单片机模块

3.1.1单片机介绍

本次设计采用的是单片机STC89C51[2]。

图3-1STC89C51管脚图

芯片共有40个引脚,引脚的排列顺序为从靠芯片的缺口,如图3-2所示。

左边那列逆时针数起,依次为1,2,3,4......40,其中芯片的1脚顶上有一个凹点。

在单片机的40个引脚中,电源引脚2根,外接晶体振荡器引脚2根,控制引脚4根以及4组8位可编程I/O引脚32根。

STC89C51单片机有4组8为可编程I/O口,分别为P0、P1、P2、P3口,每个口有8位(8根引脚),共32根。

每一根引脚都可以编程,比如用来控制电机、交通灯等,开发产品时就是利用这些可编程引脚来实现我们想要的功能。

P0口:

8位双向I/O口线,名称为P0.0-P0.7;

P1口:

8位准双向I/O口线,名称为P1.0-P1.7;

P2口:

8位准双向I/O口线,名称为P2.0-P2.7;

P3口:

8位准双向I/O口线,名称为P3.0-P3.7。

由于本次设计主要利用了单片机的P1口和P3口,所以对这两个I/O口做详细的介绍。

图3-2P1口结构图

图3-2为P1口其中一位的电路图,P1口为8位准双向口,每一位均可单独定义为输入或输出口,当作为输入口时,1写入锁存器,Q(非)=0,T2截止,内上拉电阻将电位拉至"1",此时该口输出为1,当0写入锁存器,Q(非)=1,T2导通,输出则为0。

作为输入口时,锁存器置1,Q(非)=0,T2截止,此时该位既可以把外部电路拉成低电平,也可由内部上拉电阻拉成高电平,正因为这个原因,所以P1口常称为准双向口。

需要说明的是,作为输入口使用时,有两种情况,其一是:

首先是读锁存器的内容,进行处理后再写到锁存器中,这种操作即读—修改—写操作,象JBC(逻辑判断)、CPL(取反)、INC(递增)、DEC(递减)、ANL(与逻辑)和ORL(逻辑或)指令均属于这类操作。

其二是:

读P1口线状态时,打开三态门G2,将外部状态读入CPU。

  P3口的电路如图3-4所示,P3口为准双向口,为适应引脚的第二功能的需要,增加了第二功能控制逻辑,在真正的应用电路中,第二功能显得更为重要。

由于第二功能信号有输入输出两种情况,我们分别加以说明。

  P3口的输入输出及P3口锁存器、中断、定时/计数器、串行口和特殊功能寄存器有关,P3口的第一功能和P1口一样可作为输入输出端口,同样具有字节操作和位操作两种方式,在位操作模式下,每一位均可定义为输入或输出。

  我们着重讨论P3口的第二功能,P3口的第二功能各管脚定义如下:

  P3.0    串行输入口(RXD);

  P3.1    串行输出口(TXD);

  P3.2    外中断0(INT0);

  P3.3    外中断1(INT1);

  P3.4    定时/计数器0的外部输入口(T0);

  P3.5    定时/计数器1的外部输入口(T1);

  P3.6    外部数据存储器写选通(WR);

  P3.7    外部数据存储器读选通(RD)。

 对于第二功能为输出引脚,当作I/O口使用时,第二功能信号线应保持高电平,与非门开通,以维持从锁存器到输出口数据输出通路畅通无阻。

而当作第二功能口线使用时,该位的锁存器置高电平,使与非门对第二功能信号的输出是畅通的,从而实现第二功能信号的输出。

对于第二功能为输入的信号引脚,在口线上的输入通路增设了一个缓冲器,输入的第二功能信号即从这个缓冲器的输出端取得。

而作为I/O口线输入端时,取自三态缓冲器的输出端。

这样,不管是作为输入口使用还是第二功能信号输入,输出电路中的锁存器输出和第二功能输出信号线均应置“1”。

图3-3P3口结构图

3.1.2单片机模块功能

该模块有以下几个部分组成:

复位电路:

为确保微机系统中电路稳定可靠工作,复位电路是必不可少的一部分,复位电路的第一功能是上电复位。

一般微机电路正常工作需要供电电源为5V±5%,即4.75~5.25V。

由于微机电路是时序数字电路,它需要稳定的时钟信号,因此在电源上电时,只有当VCC超过4.75V低于5.25V以及晶体振荡器稳定工作时,复位信号才被撤除,微机电路开始正常工作。

图3-4复位电路

目前为止,单片机复位电路主要有四种类型:

微分型复位电路;

积分型复位电路;

比较器型复位电路;

看门狗型复位电路。

振荡电路:

晶振是晶体振荡器的简称,在电气上它可以等效成一个电容和一个电阻并联再串联一个电容的二端网络,电工学上这个网络有两个谐振点,以频率的高低分其中较低的频率是串联谐振,较高的频率是并联谐振。

由于晶体自身的特性致使这两个频率的距离相当的接近,在这个极窄的频率范围内,晶振等效为一个电感,所以只要晶振的两端并联上合适的电容它就会组成并联谐振电路。

这个并联谐振电路加到一个负反馈电路中就可以构成正弦波振荡电路,由于晶振等效为电感的频率范围很窄,所以即使其他元件的参数变化很大,这个振荡器的频率也不会有很大的变化,震荡电路的电路图如图3-2所示.

图3-5晶振电路

晶振有一个重要的参数,那就是负载电容值,选择与负载电容值相等的并联电容,就可以得到晶振标称的谐振频率。

一般的晶振振荡电路都是在一个反相放大器(注意是放大器不是反相器)的两端接入晶振,再有两个电容分别接到晶振的两端,每个电容的另一端再接到地,这两个电容串联的容量值就应该等于负载电容,请注意一般IC的引脚都有等效输入电容,这个不能忽略。

3.2温度采集模块

3.2.1DS18B20介绍

DS18B20引脚如图3-6所示。

图3-6DS18B20引脚图

DALLAS最新单线数字温度传感器DS18B20是一种新型的“一线器件”,其体积更小、更适用于多种场合、且适用电压更宽、更经济。

DALLAS半导体公司的数字化温度传感器DS18B20是世界上第一片支持“一线总线”接口的温度传感器。

温度测量范围为-55~+125摄氏度,可编程为9位~12位转换精度,测温分辨率可达0.0625摄氏度,分辨率设定参数以及用户设定的报警温度存储在EEPROM中,掉电后依然保存。

被测温度用符号扩展的16位数字量方式串行输出;其工作电源既可以在远端引入,也可以采用寄生电源方式产生;多个DS18B20可以并联到3根或2根线上,CPU只需一根端口线就能与诸多DS18B20通信,占用微处理器的端口较少,可节省大量的引线和逻辑电路。

因此用它来组成一个测温系统,具有线路简单,在一根通信线,可以挂很多这样的数字温度计,十分方便。

3.2.2温度传感器工作原理

DS18B20的读写时序和测温原理与DS1820相同,只是得到的温度值的位数因分辨率不同而不同,且温度转换时的延时时间由2s减为750ms。

DS18B20测温原理:

低温度系数晶振的振荡频率受温度影响很小,用于产生固定频率的脉冲信号送给计数器1。

高温度系数晶振随温度变化其振荡率明显改变,所产生的信号作为计数器2的脉冲输入。

计数器1和温度寄存器被预置在-55℃所对应的一个基数值。

计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当计数器1的预置值减到0时,温度寄存器的值将加1,计数器1的预置将重新被装入,计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。

DS18B20功能特点:

1.采用单总线技术,与单片机通信只需要一根I/O线,在一根线上可以挂接多个DS18B20。

2.每只DS18B20具有一个独有的,不可修改的64位序列

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 自然科学 > 物理

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2