EG01发动机下缸体加工工艺的研究.docx

上传人:b****3 文档编号:11561387 上传时间:2023-06-01 格式:DOCX 页数:29 大小:351.58KB
下载 相关 举报
EG01发动机下缸体加工工艺的研究.docx_第1页
第1页 / 共29页
EG01发动机下缸体加工工艺的研究.docx_第2页
第2页 / 共29页
EG01发动机下缸体加工工艺的研究.docx_第3页
第3页 / 共29页
EG01发动机下缸体加工工艺的研究.docx_第4页
第4页 / 共29页
EG01发动机下缸体加工工艺的研究.docx_第5页
第5页 / 共29页
EG01发动机下缸体加工工艺的研究.docx_第6页
第6页 / 共29页
EG01发动机下缸体加工工艺的研究.docx_第7页
第7页 / 共29页
EG01发动机下缸体加工工艺的研究.docx_第8页
第8页 / 共29页
EG01发动机下缸体加工工艺的研究.docx_第9页
第9页 / 共29页
EG01发动机下缸体加工工艺的研究.docx_第10页
第10页 / 共29页
EG01发动机下缸体加工工艺的研究.docx_第11页
第11页 / 共29页
EG01发动机下缸体加工工艺的研究.docx_第12页
第12页 / 共29页
EG01发动机下缸体加工工艺的研究.docx_第13页
第13页 / 共29页
EG01发动机下缸体加工工艺的研究.docx_第14页
第14页 / 共29页
EG01发动机下缸体加工工艺的研究.docx_第15页
第15页 / 共29页
EG01发动机下缸体加工工艺的研究.docx_第16页
第16页 / 共29页
EG01发动机下缸体加工工艺的研究.docx_第17页
第17页 / 共29页
EG01发动机下缸体加工工艺的研究.docx_第18页
第18页 / 共29页
EG01发动机下缸体加工工艺的研究.docx_第19页
第19页 / 共29页
EG01发动机下缸体加工工艺的研究.docx_第20页
第20页 / 共29页
亲,该文档总共29页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

EG01发动机下缸体加工工艺的研究.docx

《EG01发动机下缸体加工工艺的研究.docx》由会员分享,可在线阅读,更多相关《EG01发动机下缸体加工工艺的研究.docx(29页珍藏版)》请在冰点文库上搜索。

EG01发动机下缸体加工工艺的研究.docx

EG01发动机下缸体加工工艺的研究

1前言

在2009年,我国汽车产量与销量跃居世界第一。

伴随着近几年来汽车工业的持续增长,与汽车制造相关的机械加工及金属切削工作量激增,汽车及其零部件制造业已成为机床和刀具行业最大、最重要的用户。

而随着市场竞争的日益加剧,提高生产效率、缩短产品交付时间、降低成本已成为企业生存和发展的关键,而优化加工工艺无疑是解决这些问题的一条重要途径。

目前,发动机缸体的加工工艺的优化设计在汽车发动机缸体的加工中已经得到普遍关注,并引起了各界人士的不同程度的参与研究与开发。

众所周知,目前缸体的加工工艺研究和改善主要是针对机床和夹具的性能及精度这一块,随着计算机技术在机床上越来越成功地运用,机床的加工范围和精度都有了很大的提升,例如大隈MXR460立式加工中心,它的高速度(强力导轨和进给轴支撑,自由曲面自适应控制)、高精度(定位精度为±0.004mm/全行程)、超强力(刚性平衡特佳的机械结构,切削能力更强)、高集成度(工件装拆方便、OSP操作盘性能超群)、高环保性(切削、切削液的处理万无一失)、快速进给速度(X、Y:

36m/min;Z:

30m/min)、短暂换刀时间(1.5秒)及同步攻丝等性能使它在同行业竞争中处于优势。

同时在选择夹具时,由于是大批量生产,并且为了提高工件的加工精度和夹具寿命等,可以设计合适的专用夹具,例如在加工不同的部位时选择不同的夹具,可以是联动夹具或则是组合夹具等。

本课题的研究主要就是考虑在加工下缸体时,通过工序的集中在专用机床上综合各方面的因素优化和改善加工工艺。

2零件概述

2.1下缸体结构特点

下缸体是一种形状复杂、薄壁的箱体类零件,缸体上布置了很多螺栓孔、油孔、气孔以及各种安装孔。

由于下缸体要与曲轴箱体上部做成一个整体,所以形成的空腔较多,但受力严重,因而它应具有较高的刚性,同时为了运输等经济性的优化,应减少缸体的壁厚,即减轻其重量。

下缸体结构如下图:

2.2下缸体的技术要求

由于缸体是发动机的基础件,它的许多面(包括缸体结合面、油底壳安装面、变速器结合面等)都是作为其它零件的装配基准,缸体零件之间的相对位置基本上都是由缸体来保证的,同时缸体的毛坯是铸件,还需加工缸体上的螺栓孔、油孔、气孔以及各种安装孔等。

这些面和孔的精度直接影响发动机的装配质量和使用性能,所以对缸体的技术要求相当严格,在这里我们将下缸体的部分面和孔的技术要求列举如下:

缸体结合面:

表面粗糙度为Ra=1.6um.

油底壳安装面:

表面粗糙度为Ra=1.6um,与缸体结合面的平行度公差值为0.1mm,位置度公差值为0.2mm。

变速器结合面:

表面粗糙度为Ra=1.6um.

定位销孔:

表面粗糙度为Ra=0.8um,其中孔B1和B2的位置度公差值为0.06mm,孔1H16和1H11的位置度公差值为0.4mm.

螺纹孔:

表面粗糙度为Ra6.3um~1.6um,位置度公差值为0.4mm~0.07mm。

其中箱体的平面加工可分成箱体平面的粗加工和半精加工,他们常选择刨削和铣削加工。

单件小批量生产中,用划线找正的方法,采用刨和铣加工平面,在龙门刨床上可以用几个刀架在一次安装工件同时加工几个平面,经济地保证了这些表面的位置度;考虑铣削比刨削生产率高,大批大量生产时,采用专用夹具在组合机床上多个表面同时加工,即保证了平面间的位置精度,又提高了生产率;精加工中,在单件小批生产时用精铣或是镗削进行加工;大批大量生产时用磨削方法加工。

孔系加工精度要求高、加工困难,是箱体加工的关键,其中有平行孔系和同轴孔系。

对于平行孔系,在加工时主要是保证各平行孔中心线之间以及孔中心线与基准面之间的尺寸精度和平行度;同轴孔系主要是保证各孔的同轴度精度。

单件小批生产箱体时,在普通镗床上,按划线依次找正孔的位置进行加工,此法误差较大,为提高精度,可采用试镗法,但此法找正、试切、测量比较耗时,生产效率低。

箱体粗加工常采用样板找正法:

镗床镗杆上装有千分表,按样板孔来找正镗杆的位置,加工完一端上的孔之后,将工作台回转180°,在用同样方法加工另一端面上的孔。

成批大量加工箱体孔系都采用镗模。

镗模两端有导向套,可引导镗杆进行加工,以保证工件的孔距精度,镗杆与机床主轴采用浮动连接,孔距精度取决于镗模精度及镗杆与导套的配合精度和刚度。

所以可利用精度不高的机床加工出精度较高的工件,镗模能用于组合机床上作多孔同时加工、找正方便、生产率高、适用于成批生产,且箱体的同轴孔系的同轴度大部分用镗模保证,对于箱壁上距离较近的同轴孔,可采用导向套加工同轴孔,反之,可利用镗床后立柱的导套支承镗杆。

产生同轴度误差的原因是当主轴进给时镗杆由于重力产生挠度而引起各孔的同轴度误差;当工作台移动时导轨的直线度误差导致各孔的同轴度误差。

2.3下缸体的工艺性分析

由下缸体的加工技术要求可以得出在加工下缸体零件时需注意的主要加工部位和加工精度特点如下:

(1)缸体属于薄壁型的壳体零件,在夹紧时容易变形,所以在加工时不但要选择合理的夹紧点,而且还要控制切削力的大小。

(2)因为缸体上孔系的位置精度要求高,故在加工时应该采用相对集中的工序加工方法。

(3)缸体作为发动机的基础零件,其上有很多紧固孔和安装孔,因此在加工选择机床时选取合理的组合机床是提高加工效率的必要措施。

(4)缸体上一些关键部位的孔系尺寸精度较高,其中有些孔必须精密加工,这在大量生产条件下生产效率和生产节拍也是一个和关键的问题,所以要安排成多道工序进行加工。

(5)在对某些斜面和斜孔的加工时应采用较特殊的安装方法或者是采用特殊的设备。

(6)由于下缸体的各个接合面的面积较大,并且有较高的位置精度和粗糙度的要求,一次加工很难满足其要求,因此要花分成几个加工阶段。

(7)由于缸体的加工部位多、工艺路线长、工件输送又较难处理、在生产管理上较为复杂,因而导致了生产面积和投资的增大。

(8)缸体的各部分尺寸的设计基准不可能完全一样,所以在加工时要充分考虑因基准不重合而造成的误差,必要时可考虑变更定位基准。

2.4下缸体加工工艺过程中应遵循的原则

缸体形状复杂且有厚度不同的壁和筋,加工精度又比较高,因此,必须充分注意加工过程中由于内应力而引起的变形,所以在安排工艺过程时应遵循以下原则:

(1)首先从大表面上切去多余的加工层,以便保证精加工后变形量很小,即先粗加工下缸体底面;

(2)容易发现零件内部缺陷的工序应安排在前面,例如粗加工缸体底面和集滤器面后随即钻铣机滤器安装孔,铣进气侧面及钻攻螺纹孔等;

(3)把各个深油孔尽可能安排在较前面的工序,以免因较大的内应力而影响后续的精加工工序,即把钻孔1H1、1H18,钻铰销孔4H12、4H17等放在第一道工序中;

(4)先面后孔,先加工平面,由于切除了毛坯表面的凸凹不平和表面夹砂等缺陷,在加工分布在平面上的孔时,划线、找正方便,而且当镗刀开始镗孔时,不会因端面有高低不平而产生冲击振动、损坏刀刃,因此一般应先加工平面。

(5)粗、精加工阶段要分开,箱体结构复杂,主要表面的精度要求高,粗加工时产生的切削力、夹紧力和切削热对加工精度有较大影响,如果立即进行精加工,那么粗加工后由于各种原因引起的工件变形没有充分暴露出来,在精加工中就无法将其消除,从而影响箱体最终的精度。

(6)工序集中或分散的决定,箱体粗、精加工阶段分开符合工序分散的原则,但是在中、小批生产时,为了减少使用机床和夹具的数量,以及减少箱体的搬运和安装次数,可将粗、精加工阶段相对集中,尽可能放在同一台机床上进行,但要采用相应的工艺措施来保证加工精度。

(7)安排适当的热处理工序,箱体结构复杂、壁厚不均,铸造时冷却速度不一致,容易产生内应力,且表面较硬,因此铸造后应安排人工实效处理以消除内应力减小变形。

2.5下缸体毛坯制造

由于缸体内部有很多复杂的型腔,其壁较薄,有很多加强筋,所以缸体的毛坯常采用铸造方法生产。

而在铸造过程中需要用到很多型芯,因此不论是造型过程还是浇注过程,都有严格的要求。

铸造缸体毛坯的主要方法有:

砂型铸造(多触点高压有箱造型)、金属型铸造、压力型铸造、低压铸造等。

缸体的浇注形式为卧式浇注,仅用两个砂箱,其型芯定位较为困难,所以容易引起毛坯尺寸及位置的偏移。

在机械加工前,须经时效处理以消除铸件的内应力及改善材料的机械性能。

目前,我国大多数汽车制造厂还要求在铸造车间对缸体进行初次的水套水压试验1~3分钟,不得有渗漏现象。

关于缸体铸造毛坯的质量和外观,各厂都有自己的标准。

例如对非加工面不允许有裂纹、缩孔、缩松以及冷隔、缺肉、夹渣、粘砂、外来夹杂物及其他降低缸体强度和影响产品外观的铸造缺陷,特别是缸孔与缸套配合面、主轴承螺孔内表面、顶面、主轴承装轴瓦表面不允许有任何缺陷。

缸体毛坯的质量对机械加工有很大的影响,归纳起来表现在以下三个方面:

(1)加工余量过大,不但造成乐原材料的利用率降低和浪费机加工时,而且还增加了机床的负荷,影响机床和道具的寿命甚至要增加生产面积和机床台数,使企业投资大为增加。

(2)飞边过大会造成与加工余量过大一样的后果。

由于飞边表面硬度较高,将导致道具的耐用度降低。

(3)由于冷热加工定位基准不一致,毛坯各部分相互间的偏移会造成机械加工时加工余量的不均匀,甚至报废。

3工艺规程设计

3.1生产纲领和生产类型的确定

生产纲领N=Qn(1+

)(1+

N——零件的年产量

Q——产品年产量

n——每台产品中该零件的件数

——备品百分率

——废品百分率

N=4000

1

(1+1%)

(1+6%)=4282件/年

由《机械制造工艺学》表1-1可知零件的生产类型为大批生产。

3.2制定工艺路线

3.2.1制定工艺路线需要注意的问题

制定工艺路线的出发点应当是使零件的几何形状、尺寸精度及位置精度等技术要求能得到合理的保证。

在生产纲领以确定为大批生产的条件下,可以考虑采用万能型机床配以专用夹具,并尽量使工序集中来提高生产率。

除此以外,还应当考虑经济效果、以使生产成本尽量降低。

拟订工艺路线是制定工艺工艺规程过程中的重要的一步。

工艺方案制定的好坏,不仅关系到加工质量和效率,而且关系到工人劳动强度,设备投资,车间面积,生产成本等诸多问题。

在制定工艺路线时,要从以下几个方面考虑。

对于加工精度要求较高和粗糙度值要求较低的面或孔(例如:

缸体结合面D、启动机安装孔2H6及后油封孔2H7等),常将工艺过程划分为粗加工和精加工两个阶段;对于加工精度要求很高、粗糙度值要求很低的零件,则常划分为粗加工阶段、半精加工阶段、精加工阶段和光整加工阶段。

鉴于本零件最高的粗糙度要求为Ra=0.8μm,精加工就可以达到技术要求,所以零件加工时将各个表面或孔的粗精加工分开进行,将整个工艺过程划分为粗加工、精加工阶段就可以了,不必设计光整加工。

在分析和研究零件图的基础上,对各表面应选择相应的加工方法。

首先选择零件表面的加工方案必须在保证零件达到图纸要求方面是稳定而可靠的,并在生产率和加工成本方面是最经济合理的;再者决定加工方法时要考虑被加工材料的性质;同时选择加工方法要考虑到生产类型,即要考虑生产率和经济性的问题。

在大批、大量生产中可采用专用的高效率设备和专用工艺装备。

在单件小批生产中,就采用通用设备、通用工艺装备及一般的加工方法。

在这里考虑到成本的问题以及大批量的生产类型而选用通用机床(即:

大隈MXR460)和刀具配以专用夹具来进行加工;其次在选择加工方法时还要考虑本厂的现有设备情况及技术条件。

应该充分利用现有设备,挖掘企业潜力,发挥工人群众的积极性和创造性。

在制定工艺过程中,为便于组织生产、安排计划和均衡机床的负荷,常将工艺过程划分为若干个工序。

划分工序时有两个原则,即工序的集中和工序的分散。

工序集中:

将若干个工步集中在一个工序内完成。

采用工序集中可以减少工件的装夹次数,在一次装夹中可以加工许多表面,有利于保证各表面之间的相互位置精度,也可以减少机床的数量,相应地减少工人的数量和机床的占地面积。

但所需要的设备复杂,操作和调整工作也较复杂。

工序分散:

工序的数目多,工艺路线长,每个工序所包括的工步少,最大限度的分散是在一个工序内只包括一个简单的工步。

工序分散可以使所得要的设备和工艺装备结构简单、调整容易、操作简单,但专用性强。

在本设计中,下缸体的加工有余工序不是很多且很多面或孔的加工精度要求差不多,所以采用工序集中的原则。

工作各表面的加工顺序,一般按照下述原则安排:

先粗加工后精加工(例如:

先粗铣底面4S16-4S18和顶面1S1再精铣等);先基准面加工后其它面加工(例如:

先加工底面再加工斜面3S1-3S4及凸台侧面1S2和1S3等);先主要表面加工后次要表面加工(例如:

先底面和顶面后前端面5S1和后端面2S1-2S2等);先平面加工后孔加工(例如:

先底面后钻孔1H1、1H18,钻铰销孔4H12、4H17,钻铣机滤器安装孔,铣进气侧面及钻攻螺纹孔等)。

根据上述原则,作为精基准的表面应安排在工艺过程开始时加工。

精基准面加工好后,接着对精度要求高的主要表面进行粗加工和半精加工,并穿插进行一些次要表面的加工,然后进行各表面的精加工。

要求高的主要表面的精加工一般安排在最后进行,这样可避免已加工表面在运输过程中碰伤,有利于保证加工精度。

为了改善工件材料的机械性能和切削性能,在加工过程中常常需要安排热处理工序。

采用何种热处理工序以及如何安排热处理工序在工艺过程中的位置,要根据热处理的目的决定。

检验工序是保证产品质量和防止产生废品的重要措施。

在每个工序中,操作者都必须自行检验。

在操作者自检的基础上,在下列场合还要安排独立检验工序:

粗加工全部结束后,精加工之前;送往其它车间加工的前后(特别是热处理工序的前后);重要工序的前后;最终加工之后等。

除以上工序以外,在工序过程中,还可根据需要在一些工序的后面安排去毛刺、去磁、清洗等工序。

3.2.2工艺方案的制定

针对以上提出的加工基准和加工顺序的选择原则,结合缸体的结构特点和精度要求,制定以下工艺路线和工序表。

(一)工艺路线:

1.粗铣底面,留余量0.5mm

2.铣集虑器面4S13

3.钻2-

9孔,深30,倒角1X45°

4.钻2-

12.7孔,深16,倒角1X45°

5.钻2-

13孔,深15°

6.钻

28.5-31孔带孔口,倒角30°

7.铣M30X1.5螺纹

8.铣各斜面

9.钻4-M8螺纹底孔,深23倒角1X45°

10.攻4-M8螺纹孔深20

11.粗铣顶面,留余量0.5mm

12.铣凸台侧面

13.铣5度斜面(S-S)视图

14.钻11-

9.5孔,深65±0.1

15.钻孔2—

7.7,深11.5,倒角1.2X45°

16.铰孔2-

8(0.115/0.1),深10

17.钻孔2-

10.7,深15,倒角1X45°

18.铰孔2-

11(0.015/0),深12.5

19.锪13-

20凸台面

20.钻集滤器通孔

21.钻14-M16螺纹孔底孔,深16,孔口倒角1X45°

22.攻14-M16螺纹孔,深14

23.精铣底面

24.铣机滤器面4S15

25.钻2-

9孔,深75

26.钻孔

14,深57±0.1

27.精铣顶面

28.粗铣前端面,留余量0.5mm

29.钻5-M6螺纹底孔,深17.5

30.攻5-M6螺纹孔,深15

31.内径

31.4(0/-0.036),槽宽3.3,深1.8±0.05

32.精铣前端面

33.粗铣后端面,留余量0.5mm

34.铣面2S4

35.反铣

180启动机安装面

36.粗、精镗孔

75.5、

76,倒角1X45°

37.粗、精镗孔

106.5、

107,倒角1.5X30°

38.钻孔5-

11.4,孔口倒角,通孔

39.精铣后端面

(二)工序表:

 

工序号

工步号

加工内容和要求

定位基准

机床

刀具

 

1

粗铣底面,留余量0.5mm

大隈MXR460

Φ63面铣刀(粗)

2

铣集虑器面4S13

大隈MXR460

Φ63面铣刀(粗)

3

钻2-

9孔,深30,倒角1X45°

大隈MXR460

Φ9复合钻

4

钻2-

12.7孔,深16,倒角1X45°

缸体结合面,变速器结合面,1H16孔中心线

大隈MXR460

Φ12.7复合钻

5

钻2-13孔,深15°

缸体结合面,变速器结合面,1H16孔中心线

大隈MXR460

Φ13铰刀

6

钻28.5-31孔带孔口,倒角30°

缸体结合面,变速器结合面,1H16孔中心线

大隈MXR460

Φ28.5-31复合钻

7

铣M30X1.5螺纹

缸体结合面,变速器结合面,1H16孔中心线

大隈MXR460

螺纹铣刀

8

铣各斜面

大隈MXR460

Φ63面铣刀(粗)

9

钻4-M8螺纹底孔,深23倒角1X45°

缸体结合面,变速器结合面,1H16孔中心线

大隈MXR460

Φ6.8复合钻

10

攻4-M8螺纹孔深20

缸体结合面,变速器结合面,1H16孔中心线

大隈MXR460

M8丝锥

 

1

粗铣顶面,留余量0.5mm

大隈MXR460

Φ80面铣刀(粗)

2

铣凸台侧面

缸体结合面

大隈MXR460

Ф20成形铣刀

3

铣5度斜面(S-S)视图

大隈MXR460

Φ20锥铣刀

4

钻11-9.5孔,深65±0.1

缸体结合面,变速器结合面,1H16孔中心线

大隈MXR460

Φ9.5直槽钻

5

钻孔2—7.7,深11.5,

倒角1.2X45°

缸体结合面,变速器结合面,1H16孔中心线

大隈MXR460

Φ7.7复合钻

6

铰孔2-8(0.115/0.1),深10

大隈MXR460

Φ8.1铰刀

7

钻孔2-10.7,深15,倒角1X45°

缸体结合面,定位销B1和B2

大隈MXR460

Φ10.7复合钻

8

铰孔2-11(0.015/0),深12.5

大隈MXR460

Φ11铰刀

 

1

锪13-20凸台面

缸体结合面

大隈MXR460

Φ20锪刀

2

钻集滤器通孔

缸体结合面,变速器结合面,1H16孔中心线

大隈MXR460

Φ15钻头

3

钻14-M16螺纹孔底孔,深16,

孔口倒角1X45°

缸体结合面,变速器结合面,1H16孔中心线

大隈MXR460

Φ5复合钻

4

攻14-M16螺纹孔,深14

大隈MXR460

M6丝锥

5

精铣底面

缸体结合面

大隈MXR460

Φ80面铣刀(精)

6

铣机滤器面4S15

缸体结合面

大隈MXR460

Φ80面铣刀(精)

 

1

钻2-9孔,深75

缸体结合面,变速器结合面,1H16孔中心线

钻铣中心

Φ9三刃钻

2

钻孔14,深57±0.1

缸体结合面,变速器结合面,1H16孔中心线

钻铣中心

Φ14复合钻

3

精铣顶面

油底壳安装面

钻铣中心

Φ80面铣刀(精)

4

粗铣前端面,留余量0.5mm

缸体结合面,变速器结合面,1H16孔中心线

钻铣中心

Φ80面铣刀(粗)

5

钻5-M6螺纹底孔,深17.5

缸体结合面,变速器结合面,1H16孔中心线

钻铣中心

Φ5复合钻

6

攻5-M6螺纹孔,深15

钻铣中心

M6丝锥

7

内径31.4(0/-0.036),槽宽3.3,

深1.8±0.05

钻铣中心

Φ38端面槽刀

8

精铣前端面

缸体结合面,变速器结合面,1H16孔中心线

钻铣中心

Φ80面铣刀(精)

 

1

粗铣后端面,留余量0.5mm

缸体结合面,变速器结合面,1H16孔中心线

大隈MXR460

Φ80面铣刀(粗)

2

铣面2S4

大隈MXR460

D16立铣刀

3

反铣180启动机安装面

大隈MXR460

Φ180反铣刀

4

粗、精镗孔75.5、76,倒角1X45°

缸体结合面,变速器结合面,1H16孔中心线

大隈MXR460

Φ75.5-76复合镗刀

5

粗、精镗孔106.5、107,

倒角1.5X30°

缸体结合面,变速器结合面,1H16孔中心线

大隈MXR460

Φ106.5-107复合镗刀

6

钻孔5-11.4,孔口倒角,通孔

缸体结合面,变速器结合面,1H16孔中心线

大隈MXR460

Φ11.4复合钻

7

精铣后端面

缸体结合面,变速器结合面,1H16孔中心线

大隈MXR460

Φ80面铣刀(精)

4机械加工余量、工序尺寸、及毛坯尺寸的确定

4.1加工余量的确定

在有毛坯变成成品的过程中,在某加工表面上切除的金属层的总厚度成为该加工表面的总余量。

每一道工序所切除的金属层厚度称为工序间加工余量。

对于外圆和孔等旋转表面而言,加工余量是从直径上考虑的,故称为对称余量(即双边余量),即实际所切除的金属层厚度是直径上的加工余量之半。

平面的加工余量则是单边余量,它等于实际所切除的金属层厚度。

任何加工方法都不可避免地要产生尺寸的变化,因此各工序加工后的尺寸也有一定的误差。

根据长期积累的经验,通过分析和统计,规定了各种加工方法的工序误差(见《金属机械加工工艺人员手册》及有关资料)。

对工序误差带一般都规定为“入体”方向标注,即对于被包容面(如轴、键等),工序间公差带都取上偏差为零,即加工后的基本尺寸和最大极限尺寸相等;对于包容面(如孔、键槽宽等),工序间公差带都取下偏差为零,即加工后的基本尺寸和最小极限尺寸相等。

但要注意的是:

毛坯尺寸的制造公差带常取双向布置。

加工余量大小对制定工艺过程有一定的影响。

总余量不够,不能保证加工质量;总余量过大,不但增加机械加工的劳动量,而且也增加了材料、刀具、电力等消耗,从而增加了成本。

加工总余量的数值,一般与毛坯的制造精度有关。

同样的毛皮制造方法,总余量的大小又与生产类型有关,批量大,总余量就可以小些。

由于粗加工的工序余量变化很大,半精加工和精加工的加工余量小,所以,在一般情况下,加工总余量总是足够分配的。

但是在个别余量分布极不均匀的情况下,也可能发生毛坯上有缺陷的表面层都切削不掉,甚至留下了毛坯表面的情况。

对于工序间余量,目前不采用计算的方法来确定,一般采用经验估计的方法,或按照技术手册等资料推荐的数据为基础,并结合生产的实际情况确定其加工余量的数值。

对于一些精加工工序(例如,磨削、研磨、珩磨、金刚镗等),有一最合适的加工余量范围。

加工余量过大,会使精加工时工时过长,甚至达不到精加工的目的(破坏了精度和表面质量);加工余量过小会使工件的某些部位加工不出来。

此外,精加工的余量不均匀,还会影响加工精度。

所以对于精加工工序余量的大小和均匀性必须予以保证。

4.2工序尺寸及公差的确定

由于加工的需要,在工序简图或工艺过程中要标注一些专供加工用的尺寸,这类尺寸就是工序尺寸,工序尺寸往往不能直接采用零件图上的尺寸。

计算工序尺寸是工艺规程制定的主要工作之一。

对于简单的工序尺寸,在决定了各工序的余量和其能达到的经济精度后,就可以计算各工序尺寸及其公差,其计算方法为“逆推法”,即由最后一步工序开始逐步向前推。

对于本零件,查阅《机械加工工艺设计手册》

,采用逆推法确定各工序尺寸如下:

1.

的加工路线为:

粗镗——精镗

(1)确定各工序的余量

由表9—145可得

粗镗为5mm,精镗为0.4mm

总余量为5.4mm

(2)计算各工序的基本尺寸

精镗后:

m

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > IT计算机 > 电脑基础知识

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2