勾股定理16种经典证明方法.docx

上传人:b****3 文档编号:11565800 上传时间:2023-06-01 格式:DOCX 页数:16 大小:186.03KB
下载 相关 举报
勾股定理16种经典证明方法.docx_第1页
第1页 / 共16页
勾股定理16种经典证明方法.docx_第2页
第2页 / 共16页
勾股定理16种经典证明方法.docx_第3页
第3页 / 共16页
勾股定理16种经典证明方法.docx_第4页
第4页 / 共16页
勾股定理16种经典证明方法.docx_第5页
第5页 / 共16页
勾股定理16种经典证明方法.docx_第6页
第6页 / 共16页
勾股定理16种经典证明方法.docx_第7页
第7页 / 共16页
勾股定理16种经典证明方法.docx_第8页
第8页 / 共16页
勾股定理16种经典证明方法.docx_第9页
第9页 / 共16页
勾股定理16种经典证明方法.docx_第10页
第10页 / 共16页
勾股定理16种经典证明方法.docx_第11页
第11页 / 共16页
勾股定理16种经典证明方法.docx_第12页
第12页 / 共16页
勾股定理16种经典证明方法.docx_第13页
第13页 / 共16页
勾股定理16种经典证明方法.docx_第14页
第14页 / 共16页
勾股定理16种经典证明方法.docx_第15页
第15页 / 共16页
勾股定理16种经典证明方法.docx_第16页
第16页 / 共16页
亲,该文档总共16页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

勾股定理16种经典证明方法.docx

《勾股定理16种经典证明方法.docx》由会员分享,可在线阅读,更多相关《勾股定理16种经典证明方法.docx(16页珍藏版)》请在冰点文库上搜索。

勾股定理16种经典证明方法.docx

勾股定理16种经典证明方法

勾股定理16种经典证明方法

勾股定理的证明

【证法1】

 

 

 

 

 

 

 

 

 

 

做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形.

从图上可以看到,这两个正方形的边长都是a+b,所以面积相等.即

,整理得

.

【证法2】(邹元治证明)

以a、b为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于

.把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、C三点在一条直线上,C、G、D三点在一条直线上.

∵EF=FG=GH=HE=b―a,

∠HEF=90º.

∴EFGH是一个边长为b―a的正方形,它的面积等于

.

.

.

【证法4】(1876年美国总统Garfield证明)

以a、b为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于

.把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上.

∵RtΔEAD≌RtΔCBE,

∴∠ADE=∠BEC.

∵∠AED+∠ADE=90º,

∴∠AED+∠BEC=90º.

∴∠DEC=180º―90º=90º.

∴ΔDEC是一个等腰直角三角形,

它的面积等于

.

又∵∠DAE=90º,∠EBC=90º,

∴AD∥BC.

∴ABCD是一个直角梯形,它的面积等于

.

.

.

【证法5】(梅文鼎证明)

做四个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c.把它们拼成如图那样的一个多边形,使D、E、F在一条直线上.过C作AC的延长线交DF于点P.

∵D、E、F在一条直线上,且RtΔGEF≌RtΔEBD,

∴∠EGF=∠BED,

∵∠EGF+∠GEF=90°,

∴∠BED+∠GEF=90°,

∴∠BEG=180º―90º=90º.

又∵AB=BE=EG=GA=c,

∴ABEG是一个边长为c的正方形.

∴∠ABC+∠CBE=90º.

∵RtΔABC≌RtΔEBD,

∴∠ABC=∠EBD.

∴∠EBD+∠CBE=90º.

即∠CBD=90º.

又∵∠BDE=90º,∠BCP=90º,

BC=BD=a.

∴BDPC是一个边长为a的正方形.

同理,HPFG是一个边长为b的正方形.

设多边形GHCBE的面积为S,则

.

 

【证法6】(项明达证明)

做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c.再做一个边长为c的正方形.把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.

过点Q作QP∥BC,交AC于点P.

过点B作BM⊥PQ,垂足为M;再过点

F作FN⊥PQ,垂足为N.

∵∠BCA=90º,QP∥BC,

∴∠MPC=90º,

∵BM⊥PQ,

∴∠BMP=90º,

∴BCPM是一个矩形,即∠MBC=90º.

∵∠QBM+∠MBA=∠QBA=90º,

∠ABC+∠MBA=∠MBC=90º,

∴∠QBM=∠ABC,

又∵∠BMP=90º,∠BCA=90º,BQ=BA=c,

∴RtΔBMQ≌RtΔBCA.

同理可证RtΔQNF≌RtΔAEF.

从而将问题转化为【证法4】(梅文鼎证明).

【证法7】(欧几里得证明)

做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结

BF、CD.过C作CL⊥DE,

交AB于点M,交DE于点

L.

∵AF=AC,AB=AD,

∠FAB=∠GAD,

∴ΔFAB≌ΔGAD,

∵ΔFAB的面积等于

ΔGAD的面积等于矩形ADLM

的面积的一半,

∴矩形ADLM的面积=

.

同理可证,矩形MLEB的面积=

.

∵正方形ADEB的面积

=矩形ADLM的面积+矩形MLEB的面积

,即

.

【证法8】(利用相似三角形性质证明)

【证法9】(杨作玫证明)

做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c.再做一个边长为c的正方形.把它们拼成如图所示的多边形.过A作AF⊥AC,AF交GT于F,AF交DT于R.过B作BP⊥AF,垂足为P.过D作DE与CB的延长线垂直,垂足为E,DE交AF于H.

∵∠BAD=90º,∠PAC=90º,

∴∠DAH=∠BAC.

又∵∠DHA=90º,∠BCA=90º,

AD=AB=c,

∴RtΔDHA≌RtΔBCA.

∴DH=BC=a,AH=AC=b.

由作法可知,PBCA是一个矩形,

所以RtΔAPB≌RtΔBCA.即PB=

CA=b,AP=a,从而PH=b―a.

∵RtΔDGT≌RtΔBCA,

RtΔDHA≌RtΔBCA.

∴RtΔDGT≌RtΔDHA.

∴DH=DG=a,∠GDT=∠HDA.

又∵∠DGT=90º,∠DHF=90º,

∠GDH=∠GDT+∠TDH=∠HDA+∠TDH=90º,

∴DGFH是一个边长为a的正方形.

∴GF=FH=a.TF⊥AF,TF=GT―GF=b―a.

∴TFPB是一个直角梯形,上底TF=b―a,下底BP=b,高FP=a+(b―a).

用数字表示面积的编号(如图),则以c为边长的正方形的面积为

=

=

.②

把②代入①,得

=

=

.

.

 

【证法10】(李锐证明)

设直角三角形两直角边的长分别为a、b(b>a),斜边的长为c.做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使A、E、G三点在一条直线上.用数字表示面积的编号(如图).

∵∠

TBE=∠ABH=90º,

∴∠TBH=∠ABE.

又∵∠BTH=∠BEA=90º,

BT=BE=b,

∴RtΔHBT≌RtΔABE.

∴HT=AE=a.

∴GH=GT―HT=b―a.

又∵∠GHF+∠BHT=90º,

∠DBC+∠BHT=∠TBH+∠BHT=90º,

∴∠GHF=∠DBC.

∵DB=EB―ED=b―a,

∠HGF=∠BDC=90º,

∴RtΔHGF≌RtΔBDC.即

.

过Q作QM⊥AG,垂足是M.由∠BAQ=∠BEA=90º,可知∠ABE

=∠QAM,而AB=AQ=c,所以RtΔABE≌RtΔQAM.又RtΔHBT≌

RtΔABE.所以RtΔHBT≌RtΔQAM.即

.

由RtΔABE≌RtΔQAM,又得QM=AE=a,∠AQM=∠BAE.

∵∠AQM+∠FQM=90º,∠BAE+∠CAR=90º,∠AQM=∠BAE,

∴∠FQM=∠CAR.

又∵∠QMF=∠ARC=90º,QM=AR=a,

∴RtΔQMF≌RtΔARC.即

.

又∵

=

=

.

 

 

【证法11】(利用切割线定理证明)

【证法12】(利用多列米定理证明)

【证法13】(作直角三角形的内切圆证明)

【证法14】(利用反证法证明)

 

【证法15】(辛卜松证明)

 

 

 

 

 

 

 

 

设直角三角形两直角边的长分别为a、b,斜边的长为c.作边长是a+b的正方形ABCD.把正方形ABCD划分成上方左图所示的几个部分,则正方形ABCD的面积为

;把正方形ABCD划分成上方右图所示的几个部分,则正方形ABCD的面积为

=

.

.

 

【证法16】(陈杰证明)

设直角三角形两直角边的长分别为a、b(b>a),斜边的长为c.做两个边长分别为a、b的正方形(b>a),把它们拼成如图所示形状,使E、H、M三点在一条直线上.用数字表示面积的编号(如图).

在EH=b上截取ED=a,连结DA、DC,

则AD=c.

∵EM=EH+HM=b+a,ED=a,

∴DM=EM―ED=

―a=b.

又∵∠CMD=90º,CM=a,

∠AED=90º,AE=b,

∴RtΔAED≌RtΔDMC.

∴∠EAD=∠MDC,DC=AD=c.

∵∠ADE+∠ADC+∠MDC=180º,

∠ADE+∠MDC=∠ADE+∠EAD=90º,

∴∠ADC=90º.

∴作AB∥DC,CB∥DA,则ABCD是一个边长为c的正方形.

∵∠BAF+∠FAD=∠DAE+∠FAD=90º,

∴∠BAF=∠DAE.

连结FB,在ΔABF和ΔADE中,

∵AB=AD=c,AE=AF=b,∠BAF=∠DAE,

∴ΔABF≌ΔADE.

∴∠AFB=∠AED=90º,BF=DE=a.

∴点B、F、G、H在一条直线上.

在RtΔABF和RtΔBCG中,

∵AB=BC=c,BF=CG=a,

∴RtΔABF≌RtΔBCG.

=

=

=

.

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > IT计算机 > 电脑基础知识

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2